BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 20393388)

  • 1. Analysis of idiopathic scoliosis progression by using numerical simulation.
    Drevelle X; Lafon Y; Ebermeyer E; Courtois I; Dubousset J; Skalli W
    Spine (Phila Pa 1976); 2010 May; 35(10):E407-12. PubMed ID: 20393388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity-induced torque and intravertebral rotation in idiopathic scoliosis.
    Adam CJ; Askin GN; Pearcy MJ
    Spine (Phila Pa 1976); 2008 Jan; 33(2):E30-7. PubMed ID: 18197088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests.
    Lafon Y; Lafage V; Steib JP; Dubousset J; Skalli W
    Spine (Phila Pa 1976); 2010 Jan; 35(2):186-93. PubMed ID: 20081515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Center of Mass and Gravity-Induced Vertebral Axial Torque on the Scoliotic Spine by Barycentremetry.
    Thenard T; Vergari C; Hernandez T; Vialle R; Skalli W
    Spine Deform; 2019 Jul; 7(4):525-532. PubMed ID: 31202367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in alignment of the scoliotic spine in response to lateral bending.
    Beuerlein MJ; Raso VJ; Hill DL; Moreau MJ; Mahood JK
    Spine (Phila Pa 1976); 2003 Apr; 28(7):693-8. PubMed ID: 12671357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation.
    Drevelle X; Dubousset J; Lafon Y; Ebermeyer E; Skalli W
    Stud Health Technol Inform; 2008; 140():85-9. PubMed ID: 18810005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of adolescent idiopathic scoliosis from body scanner image by finite element simulations.
    Grünwald ATD; Roy S; Alves-Pinto A; Lampe R
    PLoS One; 2021; 16(2):e0243736. PubMed ID: 33566808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Lateral Decubitus Positioning and Cable Tensioning on Immediate Correction in Anterior Vertebral Body Growth Modulation.
    Cobetto N; Aubin CE; Parent S
    Spine Deform; 2018; 6(5):507-513. PubMed ID: 30122385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model.
    Lafon Y; Steib JP; Skalli W
    Spine (Phila Pa 1976); 2010 Feb; 35(4):453-9. PubMed ID: 20110840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Modeling of Spine Flexibility and Its Relationship to Spinal Range of Motion and Idiopathic Scoliosis.
    Wren TAL; Ponrartana S; Poorghasamians E; Moreau S; Aggabao PC; Zaslow TL; Edison BR; Gilsanz V
    Spine Deform; 2017 Jul; 5(4):225-230. PubMed ID: 28622896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis].
    Villemure I; Aubin CE; Dansereau J; Petit Y; Labelle H
    Ann Chir; 1999; 53(8):798-807. PubMed ID: 10584392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery.
    Violas P; Estivalezes E; Briot J; Sales de Gauzy J; Swider P
    Spine (Phila Pa 1976); 2007 Jul; 32(15):E405-12. PubMed ID: 17621196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis.
    Schlösser TP; van Stralen M; Brink RC; Chu WC; Lam TP; Vincken KL; Castelein RM; Cheng JC
    Spine (Phila Pa 1976); 2014 Sep; 39(19):E1159-66. PubMed ID: 24921851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical study of the Charleston brace for the treatment of scoliosis.
    Clin J; Aubin CE; Parent S; Labelle H
    Spine (Phila Pa 1976); 2010 Sep; 35(19):E940-7. PubMed ID: 20431434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Magnetic Resonance Imaging Reveals Individual Level Deformities of Vertebrae and Discs in the Growing Scoliotic Spine.
    Keenan BE; Izatt MT; Askin GN; Labrom RD; Bennett DD; Pearcy MJ; Adam CJ
    Spine Deform; 2017 May; 5(3):197-207. PubMed ID: 28449963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervertebral disc changes with angulation, compression and reduced mobility simulating altered mechanical environment in scoliosis.
    Stokes IA; McBride C; Aronsson DD; Roughley PJ
    Eur Spine J; 2011 Oct; 20(10):1735-44. PubMed ID: 21706360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery.
    Lalonde NM; Villemure I; Pannetier R; Parent S; Aubin CE
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):510-6. PubMed ID: 20413197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.