These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270 [TBL] [Abstract][Full Text] [Related]
8. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409 [TBL] [Abstract][Full Text] [Related]
9. A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent. Yoon H; Kim GH; Koh YH J Biomater Sci Polym Ed; 2010; 21(2):159-70. PubMed ID: 20092682 [TBL] [Abstract][Full Text] [Related]
10. The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures. Liu Y; Li X; Qu X; Zhu L; He J; Zhao Q; Wu W; Li D Biofabrication; 2012 Mar; 4(1):015004. PubMed ID: 22258090 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465 [TBL] [Abstract][Full Text] [Related]
12. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Wang H; van Blitterswijk CA Biomaterials; 2010 May; 31(15):4322-9. PubMed ID: 20199809 [TBL] [Abstract][Full Text] [Related]
13. Imaging tissue engineering scaffolds using multiphoton microscopy. Sun Y; Tan HY; Lin SJ; Lee HS; Lin TY; Jee SH; Young TH; Lo W; Chen WL; Dong CY Microsc Res Tech; 2008 Feb; 71(2):140-5. PubMed ID: 17943985 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261 [TBL] [Abstract][Full Text] [Related]
15. Design and fabrication of heart muscle using scaffold-based tissue engineering. Blan NR; Birla RK J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281 [TBL] [Abstract][Full Text] [Related]
16. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Rajagopalan S; Robb RA Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007 [TBL] [Abstract][Full Text] [Related]
17. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
18. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
19. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]