BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20394384)

  • 1. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage.
    Yang J; Zhang Z; Men X; Xu X; Zhu X
    Langmuir; 2010 Jun; 26(12):10198-202. PubMed ID: 20394384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an alpha-Fe2O3 nanoflakes film.
    Yan B; Tao J; Pang C; Zheng Z; Shen Z; Huan CH; Yu T
    Langmuir; 2008 Oct; 24(19):10569-71. PubMed ID: 18788762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film.
    Huang L; Lau SP; Yang HY; Leong ES; Yu SF; Prawer S
    J Phys Chem B; 2005 Apr; 109(16):7746-8. PubMed ID: 16851899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversibly switchable wettability.
    Xin B; Hao J
    Chem Soc Rev; 2010 Feb; 39(2):769-82. PubMed ID: 20111792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible switching on superhydrophobic TiO2 nano-strawberry films fabricated at low temperature.
    Sun W; Zhou S; Chen P; Peng L
    Chem Commun (Camb); 2008 Feb; (5):603-5. PubMed ID: 18209803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO
    Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L
    ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires.
    Kwak G; Lee M; Senthil K; Yong K
    Langmuir; 2010 Jul; 26(14):12273-7. PubMed ID: 20509642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity.
    Wang L; Peng B; Su Z
    Langmuir; 2010 Jul; 26(14):12203-8. PubMed ID: 20415506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability.
    Yong J; Chen F; Yang Q; Fang Y; Huo J; Hou X
    Chem Commun (Camb); 2015 Jun; 51(48):9813-6. PubMed ID: 25987485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity.
    Caputo G; Cingolani R; Cozzoli PD; Athanassiou A
    Phys Chem Chem Phys; 2009 May; 11(19):3692-700. PubMed ID: 19421480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly.
    Li P; Lim X; Zhu Y; Yu T; Ong CK; Shen Z; Wee AT; Sow CH
    J Phys Chem B; 2007 Feb; 111(7):1672-8. PubMed ID: 17266359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin SiO(x) Film Coating Effect on the Wettability Change of TiO(2) Surfaces in the Presence and Absence of UV Light Illumination.
    Hattori A; Kawahara T; Uemoto T; Suzuki F; Tada H; Ito S
    J Colloid Interface Sci; 2000 Dec; 232(2):410-413. PubMed ID: 11097778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film.
    Zhu W; Feng X; Feng L; Jiang L
    Chem Commun (Camb); 2006 Jul; (26):2753-5. PubMed ID: 17009452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid.
    Wu T; Pan Y; Li L
    J Colloid Interface Sci; 2010 Aug; 348(1):265-70. PubMed ID: 20427047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.