These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20394384)

  • 21. Reversible wettability on polycrystalline diamond films between superhydrophobicity and superhydrophilicity.
    Zhao T; Liu H; Jiang L
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7800-3. PubMed ID: 21138036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic and superoleophilic nanoparticle film: synthesis and reversible wettability switching behavior.
    Zhang X; Guo Y; Zhang P; Wu Z; Zhang Z
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1742-6. PubMed ID: 22329929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface gradient material: from superhydrophobicity to superhydrophilicity.
    Yu X; Wang Z; Jiang Y; Zhang X
    Langmuir; 2006 May; 22(10):4483-6. PubMed ID: 16649753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics.
    Quinn A; Tjipto E; Yu A; Gengenbach TR; Caruso F
    Langmuir; 2007 Apr; 23(9):4944-9. PubMed ID: 17397199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Easy route to the wettability cycling of copper surface between superhydrophobicity and superhydrophilicity.
    Wang G; Zhang TY
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):273-9. PubMed ID: 22148586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon nanotube-based robust steamphobic surfaces.
    Badge I; Sethi S; Dhinojwala A
    Langmuir; 2011 Dec; 27(24):14726-31. PubMed ID: 22087571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic conductive carbon nanotube coatings for steel.
    Sethi S; Dhinojwala A
    Langmuir; 2009 Apr; 25(8):4311-3. PubMed ID: 19281157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces.
    Zhang X; Jin M; Liu Z; Nishimoto S; Saito H; Murakami T; Fujishima A
    Langmuir; 2006 Nov; 22(23):9477-9. PubMed ID: 17073465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides.
    Pastine SJ; Okawa D; Kessler B; Rolandi M; Llorente M; Zettl A; Fréchet JM
    J Am Chem Soc; 2008 Apr; 130(13):4238-9. PubMed ID: 18331043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyacrylonitrile/carbon nanotube composite films.
    Guo H; Minus ML; Jagannathan S; Kumar S
    ACS Appl Mater Interfaces; 2010 May; 2(5):1331-42. PubMed ID: 20441181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution.
    Gao Y; Masuda Y; Koumoto K
    Langmuir; 2004 Apr; 20(8):3188-94. PubMed ID: 15875847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity.
    Zhang Z; Zhang T; Zhang YW; Kim KS; Gao H
    Langmuir; 2012 Feb; 28(5):2753-60. PubMed ID: 22176536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity.
    Liu H; Feng L; Zhai J; Jiang L; Zhu D
    Langmuir; 2004 Jul; 20(14):5659-61. PubMed ID: 16459574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amine basicity (pKb) controls the analyte binding energy on single walled carbon nanotube electronic sensor arrays.
    Lee CY; Strano MS
    J Am Chem Soc; 2008 Feb; 130(5):1766-73. PubMed ID: 18189400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning surface wettability of In(x)Ga(1-x)N nanotip arrays by phosphonic acid modification and photoillumination.
    Su R; Liu H; Kong T; Song Q; Li N; Jin G; Cheng G
    Langmuir; 2011 Nov; 27(21):13220-5. PubMed ID: 21951060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.