These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 20394585)
1. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes. Borgognone M; Armas P; Calcaterra NB Biochem J; 2010 May; 428(3):491-8. PubMed ID: 20394585 [TBL] [Abstract][Full Text] [Related]
2. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone. Armas P; Nasif S; Calcaterra NB J Cell Biochem; 2008 Feb; 103(3):1013-36. PubMed ID: 17661353 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription. Chen S; Su L; Qiu J; Xiao N; Lin J; Tan JH; Ou TM; Gu LQ; Huang ZS; Li D Biochim Biophys Acta; 2013 Oct; 1830(10):4769-77. PubMed ID: 23774591 [TBL] [Abstract][Full Text] [Related]
4. Kinetic resolution of bimolecular hybridization versus intramolecular folding in nucleic acids by surface plasmon resonance: application to G-quadruplex/duplex competition in human c-myc promoter. Halder K; Chowdhury S Nucleic Acids Res; 2005; 33(14):4466-74. PubMed ID: 16085756 [TBL] [Abstract][Full Text] [Related]
5. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element. Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513 [TBL] [Abstract][Full Text] [Related]
6. Circular dichroism spectra and electrophoretic mobility shift assays show that human replication protein A binds and melts intramolecular G-quadruplex structures. Fan JH; Bochkareva E; Bochkarev A; Gray DM Biochemistry; 2009 Feb; 48(5):1099-111. PubMed ID: 19187036 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene. Beckett J; Burns J; Broxson C; Tornaletti S Biochemistry; 2012 Jul; 51(26):5257-68. PubMed ID: 22667821 [TBL] [Abstract][Full Text] [Related]
8. Effects of triethylene tetraamine on the G-quadruplex structure in the human c-myc promoter. Yin F; Liu J; Deng X; Wang J J Biochem; 2007 May; 141(5):669-74. PubMed ID: 17339229 [TBL] [Abstract][Full Text] [Related]
9. Quadruplex-duplex competition in the nuclease hypersensitive element of human c-myc promoter: C to T mutation in C-rich strand enhances duplex association. Halder K; Mathur V; Chugh D; Verma A; Chowdhury S Biochem Biophys Res Commun; 2005 Feb; 327(1):49-56. PubMed ID: 15629428 [TBL] [Abstract][Full Text] [Related]
10. Identification and cDNA cloning of single-stranded DNA binding proteins that interact with the region upstream of the human c-myc gene. Negishi Y; Nishita Y; Saëgusa Y; Kakizaki I; Galli I; Kihara F; Tamai K; Miyajima N; Iguchi-Ariga SM; Ariga H Oncogene; 1994 Apr; 9(4):1133-43. PubMed ID: 8134115 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures. Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142 [TBL] [Abstract][Full Text] [Related]
12. Folding of single-stranded DNA quadruplexes containing an autonomously stable mini-hairpin loop. Balkwill GD; Garner TP; Searle MS Mol Biosyst; 2009 May; 5(5):542-7. PubMed ID: 19381368 [TBL] [Abstract][Full Text] [Related]
13. A conformationally constrained nucleotide analogue controls the folding topology of a DNA g-quadruplex. Dominick PK; Jarstfer MB J Am Chem Soc; 2004 Apr; 126(16):5050-1. PubMed ID: 15099071 [TBL] [Abstract][Full Text] [Related]
14. NMR-driven discovery of benzoylanthranilic acid inhibitors of far upstream element binding protein binding to the human oncogene c-myc promoter. Huth JR; Yu L; Collins I; Mack J; Mendoza R; Isaac B; Braddock DT; Muchmore SW; Comess KM; Fesik SW; Clore GM; Levens D; Hajduk PJ J Med Chem; 2004 Sep; 47(20):4851-7. PubMed ID: 15369388 [TBL] [Abstract][Full Text] [Related]
15. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Sanders CM Biochem J; 2010 Aug; 430(1):119-28. PubMed ID: 20524933 [TBL] [Abstract][Full Text] [Related]
16. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. Tolstonog GV; Li G; Shoeman RL; Traub P DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629 [TBL] [Abstract][Full Text] [Related]
17. 9-N-Substituted berberine derivatives: stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc. Ma Y; Ou TM; Hou JQ; Lu YJ; Tan JH; Gu LQ; Huang ZS Bioorg Med Chem; 2008 Aug; 16(16):7582-91. PubMed ID: 18674916 [TBL] [Abstract][Full Text] [Related]
18. Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Yang D; Hurley LH Nucleosides Nucleotides Nucleic Acids; 2006; 25(8):951-68. PubMed ID: 16901825 [TBL] [Abstract][Full Text] [Related]
19. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains. Armas P; Agüero TH; Borgognone M; Aybar MJ; Calcaterra NB J Mol Biol; 2008 Oct; 382(4):1043-56. PubMed ID: 18703071 [TBL] [Abstract][Full Text] [Related]
20. Platination of telomeric sequences and nuclease hypersensitive elements of human c-myc and PDGF-A promoters and their ability to form G-quadruplexes. Viglasky V FEBS J; 2009 Jan; 276(2):401-9. PubMed ID: 19054066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]