These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 20394670)
1. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation. Franceschi N; Cornet S; Bollache L; Dechaume-Moncharmont FX; Bauer A; Motreuil S; Rigaud T Evolution; 2010 Aug; 64(8):2417-30. PubMed ID: 20394670 [TBL] [Abstract][Full Text] [Related]
2. The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Franceschi N; Bauer A; Bollache L; Rigaud T Int J Parasitol; 2008 Aug; 38(10):1161-70. PubMed ID: 18314127 [TBL] [Abstract][Full Text] [Related]
3. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Moret Y; Bollache L; Wattier R; Rigaud T Int J Parasitol; 2007 May; 37(6):637-44. PubMed ID: 17266962 [TBL] [Abstract][Full Text] [Related]
4. Density-dependent effects on parasite growth and parasite-induced host immunodepression in the larval helminth Pomphorhynchus laevis. Cornet S Parasitology; 2011 Feb; 138(2):257-65. PubMed ID: 20696096 [TBL] [Abstract][Full Text] [Related]
5. Intraspecific conflict over host manipulation between different larval stages of an acanthocephalan parasite. Dianne L; Rigaud T; Léger E; Motreuil S; Bauer A; Perrot-Minnot MJ J Evol Biol; 2010 Dec; 23(12):2648-55. PubMed ID: 20964763 [TBL] [Abstract][Full Text] [Related]
6. Identifying a key host in an acanthocephalan-amphipod system. Bauer A; Rigaud T Parasitology; 2015 Nov; 142(13):1588-94. PubMed ID: 26303006 [TBL] [Abstract][Full Text] [Related]
7. Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni. Hatcher MJ; Hogg JC; Dunn AM Int J Parasitol; 2005 Mar; 35(3):265-74. PubMed ID: 15722078 [TBL] [Abstract][Full Text] [Related]
8. Immune depression induced by acanthocephalan parasites in their intermediate crustacean host: consequences for the risk of super-infection and links with host behavioural manipulation. Cornet S; Franceschi N; Bauer A; Rigaud T; Moret Y Int J Parasitol; 2009 Jan; 39(2):221-9. PubMed ID: 18708062 [TBL] [Abstract][Full Text] [Related]
9. Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Dianne L; Perrot-Minnot MJ; Bauer A; Gaillard M; Léger E; Rigaud T Evolution; 2011 Sep; 65(9):2692-8. PubMed ID: 21884065 [TBL] [Abstract][Full Text] [Related]
10. Field evidence of host size-dependent parasitism in two manipulative parasites. Outreman Y; Cézilly F; Bollache L J Parasitol; 2007 Aug; 93(4):750-4. PubMed ID: 17918352 [TBL] [Abstract][Full Text] [Related]
11. Biological invasion and parasitism: invaders do not suffer from physiological alterations of the acanthocephalan Pomphorhynchus laevis. Cornet S; Sorci G; Moret Y Parasitology; 2010 Jan; 137(1):137-47. PubMed ID: 19765338 [TBL] [Abstract][Full Text] [Related]
12. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance. Lagrue C; Güvenatam A; Bollache L Parasitology; 2013 Feb; 140(2):258-65. PubMed ID: 23068018 [TBL] [Abstract][Full Text] [Related]
13. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Kaldonski N; Perrot-Minnot MJ; Motreuil S; Cézilly F Parasitology; 2008 Apr; 135(5):627-32. PubMed ID: 18371238 [TBL] [Abstract][Full Text] [Related]
14. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. Dianne L; Perrot-Minnot MJ; Bauer A; Guvenatam A; Rigaud T Int J Parasitol; 2014 Mar; 44(3-4):211-6. PubMed ID: 24291320 [TBL] [Abstract][Full Text] [Related]
15. Modification of hosts' behavior by a parasite: field evidence for adaptive manipulation. Lagrue C; Kaldonski N; Perrot-Minnot MJ; Motreuil S; Bollache L Ecology; 2007 Nov; 88(11):2839-47. PubMed ID: 18051653 [TBL] [Abstract][Full Text] [Related]
16. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Perrot-Minnot MJ; Kaldonski N; Cézilly F Int J Parasitol; 2007 May; 37(6):645-51. PubMed ID: 17258219 [TBL] [Abstract][Full Text] [Related]
17. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. Westram AM; Baumgartner C; Keller I; Jokela J Infect Genet Evol; 2011 Jul; 11(5):1083-90. PubMed ID: 21470578 [TBL] [Abstract][Full Text] [Related]
18. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light. Benesh DP; Duclos LM; Nickol BB J Parasitol; 2005 Aug; 91(4):731-6. PubMed ID: 17089736 [TBL] [Abstract][Full Text] [Related]
19. Larval helminths in intermediate hosts: does competition early in life determine the fitness of adult parasites? Fredensborg BL; Poulin R Int J Parasitol; 2005 Sep; 35(10):1061-70. PubMed ID: 16019005 [TBL] [Abstract][Full Text] [Related]
20. Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate host. Perrot-Minnot MJ; Gaillard M; Dodet R; Cézilly F Int J Parasitol; 2011 Feb; 41(2):173-81. PubMed ID: 20833172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]