These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20394805)

  • 1. Lesioning alters functional properties in isolated spinal cord hemisegmental networks.
    Hoffman N; Parker D
    Neuroscience; 2010 Jul; 168(3):732-43. PubMed ID: 20394805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-HT Modulation of identified segmental premotor interneurons in the lamprey spinal cord.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2006 Aug; 96(2):931-5. PubMed ID: 16707720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G; Margaryan G; Mladinic M; Nistri A
    Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hemisegmental locomotor network revisited.
    Cangiano L; Hill RH; Grillner S
    Neuroscience; 2012 May; 210():33-7. PubMed ID: 22433298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns.
    Jia Y; Parker D
    Front Neural Circuits; 2016; 10():4. PubMed ID: 26869889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental differences in neuromodulation and synaptic properties in the lamprey spinal cord.
    Parker D; Gilbey T
    Neuroscience; 2007 Mar; 145(1):142-52. PubMed ID: 17207575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK; Lansner A; Grillner S; Kotaleski JH
    Biol Cybern; 2007 Feb; 96(2):229-43. PubMed ID: 17180687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial-toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT.
    Baudoux S; Parker D
    Neuroscience; 2008 Jun; 153(4):1332-43. PubMed ID: 18440149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF-induced facilitation of afferent-evoked responses in lamina II neurons is reduced after neonatal spinal cord contusion injury.
    Garraway SM; Anderson AJ; Mendell LM
    J Neurophysiol; 2005 Sep; 94(3):1798-804. PubMed ID: 15901762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G; Mladinic M; Nistri A
    Eur J Neurosci; 2010 Jan; 31(1):60-78. PubMed ID: 20092556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey.
    Becker M; Parker D
    J Neurophysiol; 2019 Jun; 121(6):2323-2335. PubMed ID: 31017839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous tachykinin release contributes to the locomotor activity in lamprey.
    Pérez CT; Hill RH; Grillner S
    J Neurophysiol; 2007 May; 97(5):3331-9. PubMed ID: 17360825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.