These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20394808)

  • 1. Opioid receptor internalization contributes to dermorphin-mediated antinociception.
    Macey TA; Ingram SL; Bobeck EN; Hegarty DM; Aicher SA; Arttamangkul S; Morgan MM
    Neuroscience; 2010 Jun; 168(2):543-50. PubMed ID: 20394808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in functional selectivity of morphine with the development of antinociceptive tolerance.
    Macey TA; Bobeck EN; Suchland KL; Morgan MM; Ingram SL
    Br J Pharmacol; 2015 Jan; 172(2):549-61. PubMed ID: 24666417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug dependent sex-differences in periaqueducatal gray mediated antinociception in the rat.
    Bobeck EN; McNeal AL; Morgan MM
    Pain; 2009 Dec; 147(1-3):210-6. PubMed ID: 19796879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat.
    Bobeck EN; Haseman RA; Hong D; Ingram SL; Morgan MM
    J Pain; 2012 Aug; 13(8):799-807. PubMed ID: 22766006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray.
    Roychowdhury SM; Fields HL
    Neuroscience; 1996 Oct; 74(3):863-72. PubMed ID: 8884782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance.
    Bobeck EN; Ingram SL; Hermes SM; Aicher SA; Morgan MM
    Behav Brain Res; 2016 Feb; 298(Pt B):17-24. PubMed ID: 26497105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.
    Tershner SA; Helmstetter FJ
    Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons.
    Fyfe LW; Cleary DR; Macey TA; Morgan MM; Ingram SL
    J Pharmacol Exp Ther; 2010 Dec; 335(3):674-80. PubMed ID: 20739455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat.
    Morgan MM; Bobeck EN; Ingram SL
    Brain Res; 2009 Oct; 1295():59-66. PubMed ID: 19664608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic inflammatory pain prevents tolerance to the antinociceptive effect of morphine microinjected into the ventrolateral periaqueductal gray of the rat.
    Mehalick ML; Ingram SL; Aicher SA; Morgan MM
    J Pain; 2013 Dec; 14(12):1601-10. PubMed ID: 24161274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid selective antinociception following microinjection into the periaqueductal gray of the rat.
    Morgan MM; Reid RA; Stormann TM; Lautermilch NJ
    J Pain; 2014 Nov; 15(11):1102-1109. PubMed ID: 25106089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray.
    Tamaddonfard E; Erfanparast A; Salighedar R; Tamaddonfard S
    Naunyn Schmiedebergs Arch Pharmacol; 2020 Mar; 393(3):371-379. PubMed ID: 31641818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased agonist affinity at the μ-opioid receptor induced by prolonged agonist exposure.
    Birdsong WT; Arttamangkul S; Clark MJ; Cheng K; Rice KC; Traynor JR; Williams JT
    J Neurosci; 2013 Feb; 33(9):4118-27. PubMed ID: 23447620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance.
    Morgan MM; Clayton CC; Lane DA
    Neuroscience; 2003; 118(1):227-32. PubMed ID: 12676152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors.
    Smith PA; Selley DE; Sim-Selley LJ; Welch SP
    Eur J Pharmacol; 2007 Oct; 571(2-3):129-37. PubMed ID: 17603035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats.
    Lane DA; Patel PA; Morgan MM
    Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced antinociception with repeated microinjections of apomorphine into the periaqueductal gray of male and female rats.
    Schoo SM; Bobeck EN; Morgan MM
    Behav Pharmacol; 2018 Apr; 29(2 and 3-Spec Issue):234-240. PubMed ID: 29256893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in antinociceptive signalling mechanisms following morphine and fentanyl microinjections into the rat periaqueductal gray.
    Morgan MM; Tran A; Wescom RL; Bobeck EN
    Eur J Pain; 2020 Mar; 24(3):617-624. PubMed ID: 31785128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception.
    Godoi MM; Junior HZ; da Cunha JM; Zanoveli JM
    Pharmacol Biochem Behav; 2020 Jul; 194():172938. PubMed ID: 32376258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of local orphanin FQ in the tolerance induced by repeated microinjections of morphine into ventrolateral periaqueductal gray in rats.
    Ge ZJ; Zhang LC; Zeng YM; Dai TJ; Chang L; Wang JK; Cui GX; Tan YF; Zhao YP; Liu GJ
    Pharmacology; 2007; 80(4):261-8. PubMed ID: 17652947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.