These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20394837)

  • 1. A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.
    Hasegawa M; Iwai S; Kuraoka I
    Mutat Res; 2010 Jun; 699(1-2):62-6. PubMed ID: 20394837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-radioisotope method for diagnosing photosensitive genodermatoses and a new marker for xeroderma pigmentosum variant.
    Hashimoto S; Egawa K; Ihn H; Tateishi S
    J Dermatol; 2009 Mar; 36(3):138-43. PubMed ID: 19335687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome.
    Theron T; Fousteri MI; Volker M; Harries LW; Botta E; Stefanini M; Fujimoto M; Andressoo JO; Mitchell J; Jaspers NG; McDaniel LD; Mullenders LH; Lehmann AR
    Mol Cell Biol; 2005 Sep; 25(18):8368-78. PubMed ID: 16135823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome.
    Berneburg M; Lowe JE; Nardo T; Araújo S; Fousteri MI; Green MH; Krutmann J; Wood RD; Stefanini M; Lehmann AR
    EMBO J; 2000 Mar; 19(5):1157-66. PubMed ID: 10698956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system.
    Yamada A; Masutani C; Hanaoka F
    Biochim Biophys Acta; 2002 Oct; 1592(2):129-34. PubMed ID: 12379475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered sites of DNA repair synthesis during early nucleotide excision repair in ultraviolet light-irradiated quiescent human fibroblasts.
    Svetlova M; Solovjeva L; Pleskach N; Yartseva N; Yakovleva T; Tomilin N; Hanawalt P
    Exp Cell Res; 2002 Jun; 276(2):284-95. PubMed ID: 12027458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease.
    Brooks PJ
    DNA Repair (Amst); 2013 Aug; 12(8):656-71. PubMed ID: 23683874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus.
    Armelini MG; Muotri AR; Marchetto MC; de Lima-Bessa KM; Sarasin A; Menck CF
    Cancer Gene Ther; 2005 Apr; 12(4):389-96. PubMed ID: 15650764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells.
    Dianov GL; Houle JF; Iyer N; Bohr VA; Friedberg EC
    Nucleic Acids Res; 1997 Sep; 25(18):3636-42. PubMed ID: 9278484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Transcription Elongation by the XPG-TFIIH Complex Is Implicated in Cockayne Syndrome.
    Narita T; Narita K; Takedachi A; Saijo M; Tanaka K
    Mol Cell Biol; 2015 Sep; 35(18):3178-88. PubMed ID: 26149386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for detecting genetic toxicity using the RNA synthesis response to DNA damage.
    Morita Y; Iwai S; Kuraoka I
    J Toxicol Sci; 2011 Oct; 36(5):515-21. PubMed ID: 22008527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from ultraviolet tight-induced depression of ribosomal RNA synthesis in normal human, xeroderma pigmentosum and Cockayne syndrome cells.
    Ayaki H; Hara R; Ikenaga M
    J Radiat Res; 1996 Jun; 37(2):107-16. PubMed ID: 8840721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells.
    Christians FC; Hanawalt PC
    Mutat Res; 1994 Apr; 323(4):179-87. PubMed ID: 7512688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel XPG (ERCC5) mutations affect DNA repair and cell survival after ultraviolet but not oxidative stress.
    Soltys DT; Rocha CR; Lerner LK; de Souza TA; Munford V; Cabral F; Nardo T; Stefanini M; Sarasin A; Cabral-Neto JB; Menck CF
    Hum Mutat; 2013 Mar; 34(3):481-9. PubMed ID: 23255472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementation of transformed fibroblasts from patients with combined xeroderma pigmentosum-Cockayne syndrome.
    Ellison AR; Nouspikel T; Jaspers NG; Clarkson SG; Gruenert DC
    Exp Cell Res; 1998 Aug; 243(1):22-8. PubMed ID: 9716445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes.
    Herrera-Moyano E; Moriel-Carretero M; Montelone BA; Aguilera A
    PLoS Genet; 2014 Dec; 10(12):e1004859. PubMed ID: 25500814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells.
    Dregoesc D; Rybak AP; Rainbow AJ
    DNA Repair (Amst); 2007 May; 6(5):588-601. PubMed ID: 17196445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells.
    Balajee AS; May A; Dianov GL; Friedberg EC; Bohr VA
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4306-11. PubMed ID: 9113985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity of the ultraviolet-induced p53 response in ultraviolet-sensitive syndrome, a photosensitive disorder with a putative defect in deoxyribonucleic acid repair of actively transcribed genes.
    Ohta M; Nitta M; Yamaizumi M
    Mutat Res; 1999 Jan; 433(1):23-32. PubMed ID: 10047776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1.
    Hamdi M; Kool J; Cornelissen-Steijger P; Carlotti F; Popeijus HE; van der Burgt C; Janssen JM; Yasui A; Hoeben RC; Terleth C; Mullenders LH; van Dam H
    Oncogene; 2005 Nov; 24(48):7135-44. PubMed ID: 16044158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.