These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20394929)

  • 1. Mechanical asymmetry during articulation of tibial and femoral cartilages: local and overall compressive and shear deformation and properties.
    Wong BL; Sah RL
    J Biomech; 2010 Jun; 43(9):1689-95. PubMed ID: 20394929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation.
    Wong BL; Bae WC; Chun J; Gratz KR; Lotz M; Sah RL
    Arthritis Rheum; 2008 Jul; 58(7):2065-74. PubMed ID: 18576324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic assessment of cartilage shear: effects of counter-surface roughness, synovial fluid lubricant, and compression offset.
    Nguyen QT; Wong BL; Chun J; Yoon YC; Talke FE; Sah RL
    J Biomech; 2010 Jun; 43(9):1787-93. PubMed ID: 20189572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a focal articular defect on cartilage deformation during patello-femoral articulation.
    Wong BL; Sah RL
    J Orthop Res; 2010 Dec; 28(12):1554-61. PubMed ID: 20602462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilage shear dynamics during tibio-femoral articulation: effect of acute joint injury and tribosupplementation on synovial fluid lubrication.
    Wong BL; Kim SH; Antonacci JM; McIlwraith CW; Sah RL
    Osteoarthritis Cartilage; 2010 Mar; 18(3):464-71. PubMed ID: 20004636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cartilage Strain Distributions Are Different Under the Same Load in the Central and Peripheral Tibial Plateau Regions.
    Briant P; Bevill S; Andriacchi T
    J Biomech Eng; 2015 Dec; 137(12):121009. PubMed ID: 26501505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative positions of the contacts on the cartilage surfaces of the knee joint.
    Walker PS; Yildirim G; Sussman-Fort J; Klein GR
    Knee; 2006 Oct; 13(5):382-8. PubMed ID: 16790353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-dependent changes in cartilage T2 under compressive strain: a 7T MRI study on human knee cartilage.
    Desrochers J; Yung A; Stockton D; Wilson D
    Osteoarthritis Cartilage; 2020 Sep; 28(9):1276-1285. PubMed ID: 32474193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional cartilage properties of three quadruped tibiofemoral joints used in musculoskeletal research studies.
    McLure SW; Fisher J; Conaghan PG; Williams S
    Proc Inst Mech Eng H; 2012 Aug; 226(8):652-6. PubMed ID: 23057238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
    Chan DD; Neu CP; Hull ML
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1461-8. PubMed ID: 19447213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.
    Sutter EG; Widmyer MR; Utturkar GM; Spritzer CE; Garrett WE; DeFrate LE
    Am J Sports Med; 2015 Feb; 43(2):370-6. PubMed ID: 25504809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A depth dependent transversely isotropic micromechanic model of articular cartilage.
    Elhamian SM; Alizadeh M; Shokrieh MM; Karimi A
    J Mater Sci Mater Med; 2015 Feb; 26(2):111. PubMed ID: 25665849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint.
    Haut Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech; 2003 Jan; 36(1):19-34. PubMed ID: 12485635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI magic-angle effect in femorotibial cartilages of the red kangaroo.
    Ali TS; Thibbotuwawa N; Gu Y; Momot KI
    Magn Reson Imaging; 2017 Nov; 43():66-73. PubMed ID: 28716681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization.
    Setton LA; Mow VC; Müller FJ; Pita JC; Howell DS
    Osteoarthritis Cartilage; 1997 Jan; 5(1):1-16. PubMed ID: 9010874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of the passive knee joint. Part 1: The role of the tibial articular surfaces in guiding the passive motion.
    Amiri S; Cooke D; Kim IY; Wyss U
    Proc Inst Mech Eng H; 2006 Nov; 220(8):813-22. PubMed ID: 17236515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic loading to determine the intrinsic material properties of guinea pig knee cartilage.
    Flahiff CM; Narmoneva DA; Huebner JL; Kraus VB; Guilak F; Setton LA
    J Biomech; 2002 Sep; 35(9):1285-90. PubMed ID: 12163318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic variations in biomechanical and biochemical properties in the ankle joint: an in vitro bovine study evaluating native and engineered cartilage.
    Paschos NK; Makris EA; Hu JC; Athanasiou KA
    Arthroscopy; 2014 Oct; 30(10):1317-26. PubMed ID: 25064757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.