These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 20395013)
1. Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? Hunsche M; Blanke MM; Noga G J Plant Physiol; 2010 Aug; 167(12):974-80. PubMed ID: 20395013 [TBL] [Abstract][Full Text] [Related]
2. Effect of the use of anti-hail nets on codling moth (Cydia pomonella) and organoleptic quality of apple (cv. Braeburn) grown in Alto Adige Region (northern Italy). Baiamonte I; Raffo A; Nardo N; Moneta E; Peparaio M; D'Aloise A; Kelderer M; Casera C; Paoletti F J Sci Food Agric; 2016 Apr; 96(6):2025-32. PubMed ID: 26085140 [TBL] [Abstract][Full Text] [Related]
3. Apple production and quality when cultivated under anti-hail cover in Southern Brazil. Bosco LC; Bergamaschi H; Cardoso LS; de Paula VA; Marodin GA; Nachtigall GR Int J Biometeorol; 2015 Jul; 59(7):773-82. PubMed ID: 25179529 [TBL] [Abstract][Full Text] [Related]
4. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411 [TBL] [Abstract][Full Text] [Related]
5. Apple (Malus × domestica Borkh.) production and quality in response to anti-hail nets. Mir MA; Verma P; Sharma NC; Sharma N; Sarma U Int J Biometeorol; 2024 May; 68(5):927-938. PubMed ID: 38383770 [TBL] [Abstract][Full Text] [Related]
6. Solar radiation effects on growth, anatomy, and physiology of apple trees in a temperate climate of Brazil. Bosco LC; Bergamaschi H; Marodin GAB Int J Biometeorol; 2020 Nov; 64(11):1969-1980. PubMed ID: 32789556 [TBL] [Abstract][Full Text] [Related]
7. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
8. Grey and Black Anti-Hail Nets Ameliorated Apple ( Brito C; Rodrigues MÂ; Pinto L; Gonçalves A; Silva E; Martins S; Rocha L; Pavia I; Arrobas M; Ribeiro AC; Moutinho-Pereira J; Correia CM Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961048 [TBL] [Abstract][Full Text] [Related]
9. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales. Massonnet C; Regnard JL; Lauri PE; Costes E; Sinoquet H Tree Physiol; 2008 May; 28(5):665-78. PubMed ID: 18316299 [TBL] [Abstract][Full Text] [Related]
10. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221 [TBL] [Abstract][Full Text] [Related]
11. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Schreiber L; Skrabs M; Hartmann KD; Diamantopoulos P; Simanova E; Santrucek J Planta; 2001 Dec; 214(2):274-82. PubMed ID: 11800392 [TBL] [Abstract][Full Text] [Related]
12. Temperature, evapotranspiration and primary photochemical responses of apple leaves to hail. Tartachnyk II; Blanke MM J Plant Physiol; 2008 Nov; 165(17):1847-52. PubMed ID: 18423932 [TBL] [Abstract][Full Text] [Related]
13. Agricultural adjuvants may impair leaf transpiration and photosynthetic activity. Räsch A; Hunsche M; Mail M; Burkhardt J; Noga G; Pariyar S Plant Physiol Biochem; 2018 Nov; 132():229-237. PubMed ID: 30219740 [TBL] [Abstract][Full Text] [Related]
14. Water transport in plant cuticles: an update. Kerstiens G J Exp Bot; 2006; 57(11):2493-9. PubMed ID: 16822810 [TBL] [Abstract][Full Text] [Related]
15. Protecting against water loss: analysis of the barrier properties of plant cuticles. Riederer M; Schreiber L J Exp Bot; 2001 Oct; 52(363):2023-32. PubMed ID: 11559738 [TBL] [Abstract][Full Text] [Related]
16. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Richardson A; Franke R; Kerstiens G; Jarvis M; Schreiber L; Fricke W Planta; 2005 Oct; 222(3):472-83. PubMed ID: 15940461 [TBL] [Abstract][Full Text] [Related]
17. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
18. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
19. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway. Buchholz A J Exp Bot; 2006; 57(11):2501-13. PubMed ID: 16829545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]