These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2039503)
1. Quantitation of the class I disulfides of the insulin receptor. Chiacchia KB Biochem Biophys Res Commun; 1991 May; 176(3):1178-82. PubMed ID: 2039503 [TBL] [Abstract][Full Text] [Related]
2. Labile disulfide bonds in human placental insulin receptor. Finn FM; Ridge KD; Hofmann K Proc Natl Acad Sci U S A; 1990 Jan; 87(1):419-23. PubMed ID: 2153301 [TBL] [Abstract][Full Text] [Related]
3. Role of disulfides in the subunit structure of the insulin receptor. Reduction of class I disulfides does not impair transmembrane signalling. Massagué J; Czech MP J Biol Chem; 1982 Jun; 257(12):6729-38. PubMed ID: 7045094 [TBL] [Abstract][Full Text] [Related]
4. Alteration of intramolecular disulfides in insulin receptor/kinase by insulin and dithiothreitol: insulin potentiates the apparent dithiothreitol-dependent subunit reduction of insulin receptor. Wilden PA; Boyle TR; Swanson ML; Sweet LJ; Pessin JE Biochemistry; 1986 Jul; 25(15):4381-8. PubMed ID: 3019388 [TBL] [Abstract][Full Text] [Related]
5. The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. Pilch PF; Czech MP J Biol Chem; 1980 Feb; 255(4):1722-31. PubMed ID: 6986378 [TBL] [Abstract][Full Text] [Related]
6. Subunit structure of the purified human placental insulin receptor. Intramolecular subunit dissociation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Boyle TR; Campana J; Sweet LJ; Pessin JE J Biol Chem; 1985 Jul; 260(14):8593-600. PubMed ID: 3891757 [TBL] [Abstract][Full Text] [Related]
7. The insulin receptor. Structural basis for high affinity ligand binding. Böni-Schnetzler M; Scott W; Waugh SM; DiBella E; Pilch PF J Biol Chem; 1987 Jun; 262(17):8395-401. PubMed ID: 3597378 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis and subunit interaction of insulin receptor from membranes of cultured embryonic chick heart cells. Endo F; Elsas LJ Endocrinology; 1984 Nov; 115(5):1828-37. PubMed ID: 6386443 [TBL] [Abstract][Full Text] [Related]
9. Substructural analysis of the insulin receptor by microsequence analyses of limited tryptic fragments isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence or presence of dithiothreitol. Xu QY; Paxton RJ; Fujita-Yamaguchi Y J Biol Chem; 1990 Oct; 265(30):18673-81. PubMed ID: 2211730 [TBL] [Abstract][Full Text] [Related]
10. Wheat germ agglutinin stimulation of alpha beta heterodimeric insulin receptor beta-subunit autophosphorylation by noncovalent association into an alpha 2 beta 2 heterotetrameric state. Wilden PA; Morrison BD; Pessin JE Endocrinology; 1989 Feb; 124(2):971-9. PubMed ID: 2536324 [TBL] [Abstract][Full Text] [Related]
11. Reoxidation of the class I disulfides of the rat adipocyte insulin receptor is dependent upon the presence of insulin: the class I disulfide of the insulin receptor is extracellular. Chiacchia KB Biochemistry; 1988 Jun; 27(13):4894-902. PubMed ID: 3048393 [TBL] [Abstract][Full Text] [Related]
12. Relationship between insulin receptor subunit association and protein kinase activation: insulin-dependent covalent and Mn/MgATP-dependent noncovalent association of alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric state. Wilden PA; Morrison BD; Pessin JE Biochemistry; 1989 Jan; 28(2):785-92. PubMed ID: 2540806 [TBL] [Abstract][Full Text] [Related]
13. Insulin receptor: insulin-modulated interconversion between distinct molecular forms involving disulfide-sulfhydryl exchange. Maturo JM; Hollenberg MD; Aglio LS Biochemistry; 1983 May; 22(10):2579-86. PubMed ID: 6344921 [No Abstract] [Full Text] [Related]