These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2039505)

  • 1. Kinetics of post-exercise phosphate transport in human skeletal muscle: an in vivo 31P-MR spectroscopy study.
    Iotti S; Funicello R; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1991 May; 176(3):1204-9. PubMed ID: 2039505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate of phosphate transport during recovery from muscular exercise depends on cytosolic [H+]. A 31P-MR spectroscopy study in humans.
    Iotti S; Funicello R; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1991 Aug; 178(3):871-7. PubMed ID: 1872868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S; Lodi R; Gottardi G; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1996 Aug; 225(1):191-4. PubMed ID: 8769116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pi trapping in glycogenolytic pathway can explain transient Pi disappearance during recovery from muscular exercise. A 31P NMR study in the human.
    Bendahan D; Confort-Gouny S; Kozak-Reiss G; Cozzone PJ
    FEBS Lett; 1990 Sep; 269(2):402-5. PubMed ID: 2401366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle bioenergetics during frequency-dependent fatigue.
    Bridges CR; Clark BJ; Hammond RL; Stephenson LW
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C643-51. PubMed ID: 2003585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle pain after exercise is linked with an inorganic phosphate increase as shown by 31P NMR.
    Aldridge R; Cady EB; Jones DA; Obletter G
    Biosci Rep; 1986 Jul; 6(7):663-7. PubMed ID: 3779042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy phosphate metabolism during two bouts of progressive calf exercise in humans measured by phosphorus-31 magnetic resonance spectroscopy.
    Schocke MF; Esterhammer R; Arnold W; Kammerlander C; Burtscher M; Fraedrich G; Jaschke WR; Greiner A
    Eur J Appl Physiol; 2005 Jan; 93(4):469-79. PubMed ID: 15517340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.
    Park JH; Brown RL; Park CR; McCully K; Cohn M; Haselgrove J; Chance B
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8976-80. PubMed ID: 3480522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further impairment of muscle phosphate kinetics by lengthening exercise in DMD/BMD carriers. An in vivo 31P-NMR spectroscopy study.
    Barbiroli B; McCully KK; Iotti S; Lodi R; Zaniol P; Chance B
    J Neurol Sci; 1993 Oct; 119(1):65-73. PubMed ID: 8246012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy.
    Yoshida T; Watari H; Tagawa K
    NMR Biomed; 1996 Feb; 9(1):13-9. PubMed ID: 8842028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 31P magnetic resonance spectroscopy to the study of athletic performance.
    McCully KK; Kent JA; Chance B
    Sports Med; 1988 May; 5(5):312-21. PubMed ID: 3387735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise.
    Iotti S; Lodi R; Frassineti C; Zaniol P; Barbiroli B
    NMR Biomed; 1993; 6(4):248-53. PubMed ID: 8217526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise.
    Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle energy metabolism in McArdle's syndrome by in vivo phosphorus magnetic resonance spectroscopy.
    Argov Z; Bank WJ; Maris J; Chance B
    Neurology; 1987 Nov; 37(11):1720-4. PubMed ID: 3478608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).
    Schocke MF; Esterhammer R; Kammerlander C; Rass A; Kremser C; Fraedrich G; Jaschke WR; Greiner A
    Magn Reson Imaging; 2004 Jan; 22(1):109-15. PubMed ID: 14972400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study.
    Wilson JR; McCully KK; Mancini DM; Boden B; Chance B
    J Appl Physiol (1985); 1988 Jun; 64(6):2333-9. PubMed ID: 3403417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-energy phosphate metabolism in the calf muscle during moderate isotonic exercise under different degrees of cuff compression: a phosphorus 31 magnetic resonance spectroscopy study.
    Greiner A; Esterhammer R; Pilav S; Arnold W; Santner W; Neuhauser B; Fraedrich G; Jaschke WR; Schocke MF
    J Vasc Surg; 2005 Aug; 42(2):259-67. PubMed ID: 16102624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo skeletal muscle metabolism during dynamic exercise and recovery: assessment by nuclear magnetic resonance spectroscopy.
    Wong R; Lopaschuk G; Teo K; Walker D; Catellier D; Zhu G; Burton D; Collins-Nakai R; Montague T
    Can J Cardiol; 1992 Oct; 8(8):819-24. PubMed ID: 1423003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton buffering in human skeletal muscle studied in vivo by phosphorus magnetic resonance spectroscopy.
    Kemp GJ; Taylor DJ; Dunn JF; Radda GK
    Biochem Soc Trans; 1991 Apr; 19(2):207S. PubMed ID: 1889583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.