BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2039510)

  • 1. A 31P-NMR study on the energy state of rat liver in an experimental model of chronic dietary iron overload.
    Ceccarelli D; Predieri G; Muscatello U; Masini A
    Biochem Biophys Res Commun; 1991 May; 176(3):1262-8. PubMed ID: 2039510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic mitochondrial energy production in rats with chronic iron overload.
    Bacon BR; O'Neill R; Britton RS
    Gastroenterology; 1993 Oct; 105(4):1134-40. PubMed ID: 8405859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic metabolism by 31P NMR.
    Iles RA; Griffiths JR
    Biosci Rep; 1982 Sep; 2(9):735-42. PubMed ID: 7139082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro 31P-NMR spectroscopic studies of rat liver subjected to chronic ethanol administration.
    Ling MF; Brauer M
    Biochim Biophys Acta; 1990 Feb; 1051(2):151-8. PubMed ID: 2155663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo 31P-NMR studies on energy metabolism in and catecholamine effect on rat liver during hypovolemic shock.
    Okuda M; Muneyuki M; Nakashima K; Sogabe T; Miura I
    Biochem Int; 1987 Dec; 15(6):1089-95. PubMed ID: 3440021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of ADP and ATP to mitochondrial protein and its possible involvement in the mechanism of oxidative phosphorylation.
    Alexandre A; Rossi CR; Carignani G
    Adv Cytopharmacol; 1974; 2():163-70. PubMed ID: 4374055
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo hepatic energy pertubations during alanine infusion using 31P-NMR spectroscopy.
    Changani KK; Barnard ML; Bell JD; Williams SC; Bloom SR; Iles RA
    Biochem Soc Trans; 1995 May; 23(2):336S. PubMed ID: 7672369
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorus-31 nuclear magnetic resonance of C6 glioma cells and rat astrocytes. Evidence for a modification of the longitudinal relaxation time of ATP and Pi during glucose starvation.
    Pianet I; Merle M; Labouesse J; Canioni P
    Eur J Biochem; 1991 Jan; 195(1):87-95. PubMed ID: 1991480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular applications of 31P and 13C nuclear magnetic resonance.
    Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA
    Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethanol on hepatic energy metabolism and intracellular pH in chronically ethanol-treated rats. A 31P NMR study of normoxic or hypoxic perfused liver.
    Desmoulin F; Canioni P; Masson S; GĂ©rolami A; Cozzone PJ
    NMR Biomed; 1990 Jun; 3(3):132-8. PubMed ID: 2386660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation status of liver by 31P-n.m.r. spectroscopy, and its implications for metabolic control. A comparison of 31P-n.m.r. spectroscopy (in vivo and in vitro) with chemical and enzymic determinations of ATP, ADP and Pi.
    Iles RA; Stevens AN; Griffiths JR; Morris PG
    Biochem J; 1985 Jul; 229(1):141-51. PubMed ID: 4038253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of FK 506 and cyclosporine A on hepatic energy status in the rat after warm ischemia, as monitored by 31P nuclear magnetic resonance spectroscopy in vivo.
    Wakabayashi H; Karasawa Y; Maeba T; Tanaka S
    Transplant Proc; 1992 Oct; 24(5):1993-5. PubMed ID: 1384205
    [No Abstract]   [Full Text] [Related]  

  • 14. Perturbations in hepatic energy metabolism.
    Iles RA; Griffiths JR; Stevens AN
    Biochem Soc Trans; 1985 Oct; 13(5):843-5. PubMed ID: 4065417
    [No Abstract]   [Full Text] [Related]  

  • 15. 31P NMR studies on perfused liver from mouse with chronic ethanol ingestion.
    Sonawat HM; Yamamoto S; Leibfritz D
    Z Naturforsch C J Biosci; 1994; 49(1-2):147-53. PubMed ID: 8148004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic lipid peroxidation in vivo in rats with chronic dietary iron overload is dependent on hepatic iron concentration.
    Bacon BR; Brittenham GM; Tavill AS; McLaren CE; Park CH; Recknagel RO
    Trans Assoc Am Physicians; 1983; 96():146-54. PubMed ID: 6679952
    [No Abstract]   [Full Text] [Related]  

  • 17. A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. A phosphorus magnetic resonance spectroscopy study.
    Tanaka A; Chance B; Quistorff B
    J Biol Chem; 1989 Jun; 264(17):10034-40. PubMed ID: 2722859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 31P NMR visibility of ATP in perfused rat liver remains about 90%, unaffected by changes of metabolic state.
    Masson S; Quistorff B
    Biochemistry; 1992 Aug; 31(33):7488-93. PubMed ID: 1510935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional efficiency of mitochondrial membrane of rats with hepatic chronic iron overload.
    Masini A; Trenti T; Ventura E; Ceccarelli-Stanzani D; Muscatello U
    Biochem Biophys Res Commun; 1984 Oct; 124(2):462-9. PubMed ID: 6548629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between free iron level and rat liver mitochondrial dysfunction in experimental dietary iron overload.
    Ceccarelli D; Gallesi D; Giovannini F; Ferrali M; Masini A
    Biochem Biophys Res Commun; 1995 Apr; 209(1):53-9. PubMed ID: 7726863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.