BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 20395270)

  • 1. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis.
    Ma Z; Cowart DM; Scott RA; Giedroc DP
    Biochemistry; 2009 Apr; 48(15):3325-34. PubMed ID: 19249860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes.
    Corbett D; Schuler S; Glenn S; Andrew PW; Cavet JS; Roberts IS
    Mol Microbiol; 2011 Jul; 81(2):457-72. PubMed ID: 21564342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8.
    Barrows JK; Van Dyke MW
    J Biol Chem; 2023 Jun; 299(6):104759. PubMed ID: 37116710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR).
    Chang FM; Coyne HJ; Cubillas C; Vinuesa P; Fang X; Ma Z; Ma D; Helmann JD; García-de los Santos A; Wang YX; Dann CE; Giedroc DP
    J Biol Chem; 2014 Jul; 289(27):19204-17. PubMed ID: 24831014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR).
    Chang FM; Martin JE; Giedroc DP
    Biochemistry; 2015 Apr; 54(15):2463-72. PubMed ID: 25798654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum.
    Teramoto H; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3505-17. PubMed ID: 25592736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Insights into the Copper-Sensitive Operon Repressor in Acidithiobacillus caldus.
    Hou S; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2021 Jul; 87(16):e0066021. PubMed ID: 34085855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator.
    Liu T; Ramesh A; Ma Z; Ward SK; Zhang L; George GN; Talaat AM; Sacchettini JC; Giedroc DP
    Nat Chem Biol; 2007 Jan; 3(1):60-8. PubMed ID: 17143269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni(II) and Co(II) sensing by Escherichia coli RcnR.
    Iwig JS; Leitch S; Herbst RW; Maroney MJ; Chivers PT
    J Am Chem Soc; 2008 Jun; 130(24):7592-606. PubMed ID: 18505253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylacetyl coenzyme A is an effector molecule of the TetR family transcriptional repressor PaaR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Kuramitsu S; Shinkai A
    J Bacteriol; 2011 Sep; 193(17):4388-95. PubMed ID: 21725002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR).
    Dwarakanath S; Chaplin AK; Hough MA; Rigali S; Vijgenboom E; Worrall JAR
    J Biol Chem; 2012 May; 287(21):17833-17847. PubMed ID: 22451651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1.
    Zhao Z; Zhou Z; Li L; Xian X; Ke X; Chen M; Zhang Y
    Mol Biosyst; 2014 Oct; 10(10):2607-16. PubMed ID: 25030084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper trafficking in the CsoR regulon of Streptomyces lividans.
    Chaplin AK; Tan BG; Vijgenboom E; Worrall JA
    Metallomics; 2015 Jan; 7(1):145-55. PubMed ID: 25409712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of select histidine to cysteine mutations on transcriptional regulation by Escherichia coli RcnR.
    Higgins KA; Hu HQ; Chivers PT; Maroney MJ
    Biochemistry; 2013 Jan; 52(1):84-97. PubMed ID: 23215580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8.
    Keightley JA; Zimmermann BH; Mather MW; Springer P; Pastuszyn A; Lawrence DM; Fee JA
    J Biol Chem; 1995 Sep; 270(35):20345-58. PubMed ID: 7657607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation.
    Agari Y; Agari K; Sakamoto K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1589-1601. PubMed ID: 21349973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P(1B)-type ATPase operons.
    Teramoto H; Inui M; Yukawa H
    Biosci Biotechnol Biochem; 2012; 76(10):1952-8. PubMed ID: 23090582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells.
    Osman D; Piergentili C; Chen J; Chakrabarti B; Foster AW; Lurie-Luke E; Huggins TG; Robinson NJ
    J Biol Chem; 2015 Aug; 290(32):19806-22. PubMed ID: 26109070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General and Genomic DNA-Binding Specificity for the
    Shell Cox J; Van Dyke MW
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31935968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.