These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20396016)

  • 1. Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar.
    Menyuk N; Killinger DK; Defeo WE
    Appl Opt; 1982 Jun; 21(12):2275-86. PubMed ID: 20396016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements.
    Menyuk N; Killinger DK; Menyuk CR
    Appl Opt; 1982 Sep; 21(18):3377-83. PubMed ID: 20396240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote sensing of NO using a differential absorption lidar.
    Menyuk N; Killinger DK; Defeo WE
    Appl Opt; 1980 Oct; 19(19):3282-6. PubMed ID: 20234607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential absorption lidar signal averaging.
    Grant WB; Brothers AM; Bogan JR
    Appl Opt; 1988 May; 27(10):1934-8. PubMed ID: 20531685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels.
    Loper GL; Calloway AR; Stamps MA; Gelbwachs JA
    Appl Opt; 1980 Aug; 19(16):2726-34. PubMed ID: 20234499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser remote sensing of atmospheric ammonia using a CO2 lidar system.
    Force AP; Killinger DK; DeFeo WE; Menyuk N
    Appl Opt; 1985 Sep; 24(17):2837-41. PubMed ID: 18223964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote measurement of HCI, CH(4), and N(2)O using a single-ended chemical-laser lidar system.
    Murray ER; van der Laan JE; Hawley JG
    Appl Opt; 1976 Dec; 15(12):3140-8. PubMed ID: 20168405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter.
    Milton MJ; Woods PT
    Appl Opt; 1987 Jul; 26(13):2598-603. PubMed ID: 20489926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric CO
    Larsson J; Bood J; Xu CT; Yang X; Lindberg R; Laurell F; Brydegaard M
    Opt Express; 2019 Jun; 27(12):17348-17358. PubMed ID: 31252945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles.
    Cha S; Chan KP; Killinger DK
    Appl Opt; 1991 Sep; 30(27):3938-43. PubMed ID: 20706485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism and activation of 1,1-dimethylhydrazine and methylhydrazine, two products of N-nitrosodimethylamine reductive biotransformation.
    Godoy HM; Díaz Gómez MI; Castro JA
    IARC Sci Publ; 1984; (57):479-84. PubMed ID: 6442710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.
    Gibert F; Joly L; Xuéref-Rémy I; Schmidt M; Royer A; Flamant PH; Ramonet M; Parvitte B; Durry G; Zéninari V
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1914-21. PubMed ID: 18718810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote measurement of ethylene using a CO(2) differential-absorption lidar.
    Murray ER; van der Laan JE
    Appl Opt; 1978 Mar; 17(5):814-7. PubMed ID: 20197878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants.
    Moulik S; Kumar KP; Bohra S; Sridhar S
    J Hazard Mater; 2015 May; 288():69-79. PubMed ID: 25698568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote measurement of atmospheric N(2)O with a DF laser lidar.
    Altmann J; Lahmann W; Weitkamp C
    Appl Opt; 1980 Oct; 19(20):3453-7. PubMed ID: 20234640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar.
    Endemann M; Byer RL
    Appl Opt; 1981 Sep; 20(18):3211-7. PubMed ID: 20333123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive computational study on reaction mechanism of N-Nitroso dimethyl amine formation from substituted hydrazine derivatives during ozonation.
    Sulay R; Mathew J; Krishnan A; Thomas DVI
    Heliyon; 2023 Mar; 9(3):e14511. PubMed ID: 36967895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system.
    Zhao Y
    Appl Opt; 2000 Feb; 39(6):997-1007. PubMed ID: 18337979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing.
    Kameyama S; Imaki M; Hirano Y; Ueno S; Kawakami S; Sakaizawa D; Nakajima M
    Appl Opt; 2011 Apr; 50(11):1560-9. PubMed ID: 21478929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.
    Higdon NS; Browell EV; Ponsardin P; Grossmann BE; Butler CF; Chyba TH; Mayo MN; Allen RJ; Heuser AW; Grant WB; Ismail S; Mayor SD; Carter AF
    Appl Opt; 1994 Sep; 33(27):6422-38. PubMed ID: 20941181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.