These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20396145)

  • 1. Determination of 2-D thickness distributions of low absorbing thin films by new laser interferometry.
    Mishima T; Kao KC
    Appl Opt; 1982 Aug; 21(16):2894-6. PubMed ID: 20396145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions.
    Mishima T; Kao KC
    Appl Opt; 1982 Mar; 21(6):1101-5. PubMed ID: 20389811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rapid and precise determination of the optical thickness of thin coatings in a vacuum.
    van Heel AC; van Vonno W
    Appl Opt; 1967 May; 6(5):793-7. PubMed ID: 20057851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of spatial distributions of thickness and optical constants of thin films by a new optical technique.
    Mishima T; Kao KC
    Appl Opt; 1981 Nov; 20(21):3719-22. PubMed ID: 20372251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,R(m)) technique.
    Hjortsberg A
    Appl Opt; 1981 Apr; 20(7):1254-63. PubMed ID: 20309294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma silicon oxide films on garnet substrates: measurement of their thickness and refractive index by the prism coupling technique.
    Hou TW; Mogab CJ
    Appl Opt; 1981 Sep; 20(18):3184-8. PubMed ID: 20333119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.
    Kukhtarev N; Kukhtareva T; Gallegos SC
    Appl Opt; 2011 Mar; 50(7):B53-7. PubMed ID: 21364712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin-film 2.8-microm and 3.8-microm absorption in single-layer films.
    Harrington JA; Rudisill JE; Braunstein M
    Appl Opt; 1978 Sep; 17(17):2798-801. PubMed ID: 20203869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fizeau interferometry for measuring refractive index and thickness of nearly transparent films.
    Buckman AB; Kuo C
    Appl Opt; 1978 Nov; 17(22):3636-40. PubMed ID: 20204044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the refractive index and thickness of thin transparent films: method.
    Daneu V; Sanchez A
    Appl Opt; 1974 Jan; 13(1):122-8. PubMed ID: 20125932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of (n,k) for absorbing thin films using reflectance measurements.
    Siqueiros JM; Regalado LE; Machorro R
    Appl Opt; 1988 Oct; 27(20):4260-4. PubMed ID: 20539554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New approach to optical analysis of absorbing thin solid films.
    Demichelis F; Kaniadakis G; Tagliaferro A; Tresso E
    Appl Opt; 1987 May; 26(9):1737-40. PubMed ID: 20454398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the optical constants (n, k) of thin dielectric films.
    Khawaja EE; Bouamrane F
    Appl Opt; 1993 Mar; 32(7):1168-72. PubMed ID: 20820248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed equation for the normal incidence reflectance of thin films on absorbing substrates.
    Vargas WE; Castro D
    Appl Opt; 2007 Feb; 46(4):502-5. PubMed ID: 17230242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance ultrasound spectroscopy with laser-Doppler interferometry for studying elastic properties of thin films.
    Nakamura N; Ogi H; Hirao M
    Ultrasonics; 2004 Apr; 42(1-9):491-4. PubMed ID: 15047334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates.
    Saran N; Parikh K; Suh DS; Muñoz E; Kolla H; Manohar SK
    J Am Chem Soc; 2004 Apr; 126(14):4462-3. PubMed ID: 15070332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical characterization of low-index transparent thin films on transparent substrates by spectroscopic ellipsometry.
    Gustin KM
    Appl Opt; 1987 Sep; 26(18):3796-802. PubMed ID: 20490143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical factors in the photoemission of thin films.
    Ramberg EG
    Appl Opt; 1967 Dec; 6(12):2163-70. PubMed ID: 20062380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications.
    Zhu J; He J
    Nanoscale; 2012 Jun; 4(11):3558-66. PubMed ID: 22573099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force.
    Yoo H; Shin H; Sim B; Kim S; Lee M
    Nanotechnology; 2009 Jun; 20(24):245301. PubMed ID: 19468166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.