These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20396221)

  • 1. Flow visualization of Bénard convection using holographic interferometry.
    Ueda M; Kagawa K; Yamada K; Yamaguchi C; Harada Y
    Appl Opt; 1982 Sep; 21(18):3269-72. PubMed ID: 20396221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity measurements in a convective flow by holographic interferometry.
    Andrés N; Arroyo P; Quintanilla M
    Appl Opt; 1997 Sep; 36(27):6997-7007. PubMed ID: 18259573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rayleigh-Bénard percolation transition of thermal convection in porous media: computational fluid dynamics, NMR velocity mapping, NMR temperature mapping.
    Weber M; Kimmich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056301. PubMed ID: 12513590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of ultrasonic wave fronts using holographic interferometry.
    Oshida Y; Iwata K; Nagata R; Ueda M
    Appl Opt; 1980 Jan; 19(2):222-7. PubMed ID: 20216833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Doppler holographic technique for fluid velocity visualization and measurement.
    Mayo WT; Allen JB
    Appl Opt; 1971 Sep; 10(9):2119-26. PubMed ID: 20111281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital speckle-pattern interferometry as a full-field fluid-velocimetry technique.
    Andrés N; Arroyo MP; Hinrichs H; Quintanilla M
    Opt Lett; 1999 May; 24(9):575-7. PubMed ID: 18073787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.
    Kuehn K; Polfer J; Furno J; Finke N
    Rev Sci Instrum; 2007 Nov; 78(11):113704. PubMed ID: 18052477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.
    Tasaka Y; Igaki K; Yanagisawa T; Vogt T; Zuerner T; Eckert S
    Phys Rev E; 2016 Apr; 93():043109. PubMed ID: 27176392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow reversals in low-Prandtl-number Rayleigh-Bénard convection controlled by horizontal circulations.
    Yanagisawa T; Hamano Y; Sakuraba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023018. PubMed ID: 26382514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the thermoelectric effect on the Rayleigh-Bénard instability inside a magnetic field.
    Kurenkova N; Zienicke E; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036307. PubMed ID: 11580447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.
    Yanagisawa T; Yamagishi Y; Hamano Y; Tasaka Y; Yoshida M; Yano K; Takeda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016320. PubMed ID: 20866738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic stabilization of the Rayleigh-Bénard instability by acceleration modulation.
    Swaminathan A; Garrett SL; Poese ME; Smith RWM
    J Acoust Soc Am; 2018 Oct; 144(4):2334. PubMed ID: 30404487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convection patterns in a liquid metal under an imposed horizontal magnetic field.
    Yanagisawa T; Hamano Y; Miyagoshi T; Yamagishi Y; Tasaka Y; Takeda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063020. PubMed ID: 24483570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition of spiral-defect chaos and rolls in Rayleigh-Bénard convection under shear flow.
    Shiwa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026306. PubMed ID: 12636799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous flow reversals in Rayleigh-Bénard convection of a liquid metal.
    Yanagisawa T; Yamagishi Y; Hamano Y; Tasaka Y; Takeda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036307. PubMed ID: 21517587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of in-plane and out-of-plane motions in holographic interferometry.
    Katzir Y; Glaser I
    Appl Opt; 1982 Feb; 21(4):678-83. PubMed ID: 20372516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR imaging of thermal convection patterns.
    Weis J; Kimmich R; Müller HP
    Magn Reson Imaging; 1996; 14(3):319-27. PubMed ID: 8725197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: suppression of oscillatory flow observed by velocity profiles.
    Yanagisawa T; Yamagishi Y; Hamano Y; Tasaka Y; Yano K; Takahashi J; Takeda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056306. PubMed ID: 21230575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortionless interferogram recording by use of holographic field lenses for fluid velocimetry.
    Andrés N; Arroyo P; Quintanilla M
    Appl Opt; 1997 Dec; 36(36):9468-74. PubMed ID: 18264507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From convection rolls to finger convection in double-diffusive turbulence.
    Yang Y; Verzicco R; Lohse D
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):69-73. PubMed ID: 26699474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.