BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20396930)

  • 1. Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant.
    Vugmeyster L; Ostrovsky D; Li Y
    J Biomol NMR; 2010 Jun; 47(2):155-62. PubMed ID: 20396930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain.
    Vugmeyster L; McKnight CJ
    J Biomol NMR; 2009 Jan; 43(1):39-50. PubMed ID: 19030997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphorylation-induced conformation change in dematin headpiece.
    Jiang ZG; McKnight CJ
    Structure; 2006 Feb; 14(2):379-87. PubMed ID: 16472756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NMR structure of dematin headpiece reveals a dynamic loop that is conformationally altered upon phosphorylation at a distal site.
    Frank BS; Vardar D; Chishti AH; McKnight CJ
    J Biol Chem; 2004 Feb; 279(9):7909-16. PubMed ID: 14660664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain.
    Vugmeyster L; Ostrovsky D
    J Biomol NMR; 2011 Jun; 50(2):119-27. PubMed ID: 21416162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy.
    Ulmer TS; Ramirez BE; Delaglio F; Bax A
    J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dematin exhibits a natively unfolded core domain and an independently folded headpiece domain.
    Chen L; Jiang ZG; Khan AA; Chishti AH; McKnight CJ
    Protein Sci; 2009 Mar; 18(3):629-36. PubMed ID: 19241372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the PXW sequence as a structural gatekeeper of the headpiece C-terminal subdomain fold.
    Vermeulen W; Van Troys M; Bourry D; Dewitte D; Rossenu S; Goethals M; Borremans FA; Vandekerckhove J; Martins JC; Ampe C
    J Mol Biol; 2006 Jun; 359(5):1277-92. PubMed ID: 16697408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated and NMR-derived backbone dynamics of a protein with significant flexibility: a comparison of spectral densities for the betaARK1 PH domain.
    Pfeiffer S; Fushman D; Cowburn D
    J Am Chem Soc; 2001 Apr; 123(13):3021-36. PubMed ID: 11457013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assignment of the orphan nuclear receptor Nurr1 by NMR.
    Michiels P; Atkins K; Ludwig C; Whittaker S; van Dongen M; Günther U
    Biomol NMR Assign; 2010 Apr; 4(1):101-5. PubMed ID: 20300892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Lipari-Szabo modelfree parameters from 13CO NMR relaxation experiments.
    Wang T; Weaver DS; Cai S; Zuiderweg ER
    J Biomol NMR; 2006 Oct; 36(2):79-102. PubMed ID: 17013680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Relaxation Mechanisms for Backbone Carbonyl Carbons in a 13 C, 15 N-Labeled Protein.
    Allard P; Härd T
    J Magn Reson; 1997 May; 126(1):48-57. PubMed ID: 9252275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid automated determination of chemical shift anisotropy values in the carbonyl and carboxyl groups of fd-y21m bacteriophage using solid state NMR.
    Aharoni T; Goldbourt A
    J Biomol NMR; 2018 Oct; 72(1-2):55-67. PubMed ID: 30141148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct correlation of consecutive C'-N groups in proteins: a method for the assignment of intrinsically disordered proteins.
    Pantoja-Uceda D; Santoro J
    J Biomol NMR; 2013 Sep; 57(1):57-63. PubMed ID: 23929272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy.
    Loth K; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of protein structure against non-redundant carbonyl 13C NMR relaxation.
    Tjandra N; Suzuki M; Chang SL
    J Biomol NMR; 2007 Jul; 38(3):243-53. PubMed ID: 17554496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements.
    Lillemoen J; Hoffman DW
    J Mol Biol; 1998 Aug; 281(3):539-51. PubMed ID: 9698568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of long-range cross-correlation rates using a combination of single- and multiple-quantum NMR spectroscopy in one experiment.
    Fruh D; Chiarparin E; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2002 Apr; 124(15):4050-7. PubMed ID: 11942843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow backbone dynamics of chicken villin headpiece subdomain probed by NMR C'-N cross-correlated relaxation.
    Vugmeyster L
    Magn Reson Chem; 2009 Sep; 47(9):746-51. PubMed ID: 19479944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.