These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 20396940)

  • 1. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis.
    Besserve M; Schölkopf B; Logothetis NK; Panzeri S
    J Comput Neurosci; 2010 Dec; 29(3):547-66. PubMed ID: 20396940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands.
    Belitski A; Panzeri S; Magri C; Logothetis NK; Kayser C
    J Comput Neurosci; 2010 Dec; 29(3):533-45. PubMed ID: 20232128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications.
    Schanze T; Eckhorn R
    Int J Psychophysiol; 1997 Jun; 26(1-3):171-89. PubMed ID: 9203002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal band separation of extracellular field potentials.
    Magri C; Mazzoni A; Logothetis NK; Panzeri S
    J Neurosci Methods; 2012 Sep; 210(1):66-78. PubMed ID: 22101145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information.
    Belitski A; Gretton A; Magri C; Murayama Y; Montemurro MA; Logothetis NK; Panzeri S
    J Neurosci; 2008 May; 28(22):5696-709. PubMed ID: 18509031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine Is Signaled by Mid-frequency Oscillations and Boosts Output Layers Visual Information in Visual Cortex.
    Zaldivar D; Goense J; Lowe SC; Logothetis NK; Panzeri S
    Curr Biol; 2018 Jan; 28(2):224-235.e5. PubMed ID: 29307559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.
    Takaura K; Tsuchiya N; Fujii N
    Neuroimage; 2016 Jan; 124(Pt A):557-572. PubMed ID: 26363347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Spectral Entropy and Application to Functional Corticomuscular Coupling.
    Chen X; Zhang Y; Cheng S; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1092-1102. PubMed ID: 30908233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model.
    Mazzoni A; Whittingstall K; Brunel N; Logothetis NK; Panzeri S
    Neuroimage; 2010 Sep; 52(3):956-72. PubMed ID: 20026218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.
    Sellers KK; Bennett DV; Fröhlich F
    Brain Res; 2015 Feb; 1598():31-45. PubMed ID: 25498982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring spike trains from local field potentials.
    Rasch MJ; Gretton A; Murayama Y; Maass W; Logothetis NK
    J Neurophysiol; 2008 Mar; 99(3):1461-76. PubMed ID: 18160425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings.
    Magri C; Whittingstall K; Singh V; Logothetis NK; Panzeri S
    BMC Neurosci; 2009 Jul; 10():81. PubMed ID: 19607698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data.
    Robinson PA
    Biol Cybern; 2007 Oct; 97(4):317-35. PubMed ID: 17899164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey.
    Rols G; Tallon-Baudry C; Girard P; Bertrand O; Bullier J
    Vis Neurosci; 2001; 18(4):527-40. PubMed ID: 11829299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat.
    Imas OA; Ropella KM; Ward BD; Wood JD; Hudetz AG
    Neurosci Lett; 2005 Oct; 387(3):145-50. PubMed ID: 16019145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different neural frequency bands integrate faces and voices differently in the superior temporal sulcus.
    Chandrasekaran C; Ghazanfar AA
    J Neurophysiol; 2009 Feb; 101(2):773-88. PubMed ID: 19036867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey.
    Frien A; Eckhorn R; Bauer R; Woelbern T; Gabriel A
    Eur J Neurosci; 2000 Apr; 12(4):1453-65. PubMed ID: 10762373
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.