These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20397034)

  • 1. Differing views of the role of selenium in thioredoxin reductase.
    Hondal RJ; Ruggles EL
    Amino Acids; 2011 Jun; 41(1):73-89. PubMed ID: 20397034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
    Lothrop AP; Snider GW; Ruggles EL; Patel AS; Lees WJ; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):654-63. PubMed ID: 24422500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes.
    Snider GW; Ruggles E; Khan N; Hondal RJ
    Biochemistry; 2013 Aug; 52(32):5472-81. PubMed ID: 23865454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenocysteine in thiol/disulfide-like exchange reactions.
    Hondal RJ; Marino SM; Gladyshev VN
    Antioxid Redox Signal; 2013 May; 18(13):1675-89. PubMed ID: 23121622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium in thioredoxin reductase: a mechanistic perspective.
    Lacey BM; Eckenroth BE; Flemer S; Hondal RJ
    Biochemistry; 2008 Dec; 47(48):12810-21. PubMed ID: 18986163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine.
    Ste Marie EJ; Wehrle RJ; Haupt DJ; Wood NB; van der Vliet A; Previs MJ; Masterson DS; Hondal RJ
    Biochemistry; 2020 Sep; 59(36):3300-3315. PubMed ID: 32845139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol cofactors for selenoenzymes and their synthetic mimics.
    Sarma BK; Mugesh G
    Org Biomol Chem; 2008 Mar; 6(6):965-74. PubMed ID: 18327317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis.
    Nauser T; Steinmann D; Grassi G; Koppenol WH
    Biochemistry; 2014 Aug; 53(30):5017-22. PubMed ID: 24999795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: implications for the catalytic mechanism and redox signaling.
    Snider G; Grout L; Ruggles EL; Hondal RJ
    Biochemistry; 2010 Dec; 49(48):10329-38. PubMed ID: 21038895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium in chemistry and biochemistry in comparison to sulfur.
    Wessjohann LA; Schneider A; Abbas M; Brandt W
    Biol Chem; 2007 Oct; 388(10):997-1006. PubMed ID: 17937613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "Seleno Effect" Differentiates the Roles of Redox Active Cysteine Residues in Plasmodium falciparum Thioredoxin Reductase.
    O'Keefe JP; Dustin CM; Barber D; Snider GW; Hondal RJ
    Biochemistry; 2018 Mar; 57(11):1767-1778. PubMed ID: 29485860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.
    Lothrop AP; Ruggles EL; Hondal RJ
    Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation.
    Kuwahara M; Tamura T; Kawamura K; Inagaki K
    Biosci Biotechnol Biochem; 2011; 75(3):516-21. PubMed ID: 21389620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations.
    Zhong L; Holmgren A
    J Biol Chem; 2000 Jun; 275(24):18121-8. PubMed ID: 10849437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase.
    Marcocci L; Flohé L; Packer L
    Biofactors; 1997; 6(3):351-8. PubMed ID: 9288405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.
    Lothrop AP; Snider GW; Flemer S; Ruggles EL; Davidson RS; Lamb AL; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):664-74. PubMed ID: 24490974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine.
    Kim MJ; Lee BC; Hwang KY; Gladyshev VN; Kim HY
    Biochem Biophys Res Commun; 2015 Jun; 461(4):648-52. PubMed ID: 25912135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.
    Gromer S; Gross JH
    J Biol Chem; 2002 Mar; 277(12):9701-6. PubMed ID: 11782468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.