These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 20397086)

  • 1. Comparison of a novel profile method to standard chamber methods for measurement of sediment oxygen demand.
    Miskewitz RJ; Francisco KL; Uchrin CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(7):795-802. PubMed ID: 20397086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady diffusional mass transfer at the sediment/water interface: Theory and significance for SOD measurement.
    Higashino M; Gantzer CJ; Stefan HG
    Water Res; 2004 Jan; 38(1):1-12. PubMed ID: 14630097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption by a sediment bed for stagnant water: comparison to SOD with fluid flow.
    Higashino M
    Water Res; 2011 Oct; 45(15):4381-9. PubMed ID: 21624628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of Sediment Oxygen Demand in a Drinking Water Reservoir].
    Su L; Huang TL; Li N; Zhang HH; Wen G; Li Y; Chen JW; Wang XJ
    Huan Jing Ke Xue; 2018 Mar; 39(3):1159-1166. PubMed ID: 29965460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.
    Rong N; Shan B; Wang C
    Int J Environ Res Public Health; 2016 Feb; 13(2):232. PubMed ID: 26907307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and fractionations of sediment oxygen demand in a complex tidal river network area.
    Huang Z; Liu X; Wen J; Fang H; Lin S; Li W; Wang J; Zeng F; Du H; Shi L
    J Environ Manage; 2024 Mar; 354():120352. PubMed ID: 38367503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring sediment oxygen demand for assessment of dissolved oxygen distribution in river.
    Liu WC; Chen WB
    Environ Monit Assess; 2012 Sep; 184(9):5589-99. PubMed ID: 21912865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effects on tubificid worms and their relation to sediment oxygen demand.
    Otubu JE; Hunter JV; Francisco KL; Uchrin CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1607-13. PubMed ID: 16835114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sediment Oxygen Demand: A Review of In Situ Methods.
    Coenen EN; Christensen VG; Bartsch LA; Kreiling RM; Richardson WB
    J Environ Qual; 2019 Mar; 48(2):403-411. PubMed ID: 30951115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of bottom sediments in lakes using hydroacoustic methods and comparison with laboratory measurements.
    Anderson MA; Pacheco P
    Water Res; 2011 Oct; 45(15):4399-408. PubMed ID: 21724221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of benthic hydraulics on sediment oxygen demand in a canyon-shaped deep drinking water reservoir: Experimental and modeling study.
    Li N; Huang T; Chang Z; Li K
    J Environ Sci (China); 2021 Apr; 102():226-234. PubMed ID: 33637247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediment Oxygen Demand in Cochin backwaters, a tropical estuarine system in the south-west coast of India.
    Abhilash KR; Raveendran TV; Limna Mol VP; Deepak MP
    Mar Environ Res; 2012 Aug; 79():160-6. PubMed ID: 22687716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causes of low oxygen in a lowland, regulated eutrophic river in Eastern England.
    Parr LB; Mason CF
    Sci Total Environ; 2004 Apr; 321(1-3):273-86. PubMed ID: 15050401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes.
    Ouddane B; Monperrus M; Kadlecova M; Daye M; Amouroux D
    Environ Sci Process Impacts; 2015 Jan; 17(1):145-55. PubMed ID: 25421488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides.
    Zebracki M; Eyrolle-Boyer F; Evrard O; Claval D; Mourier B; Gairoard S; Cagnat X; Antonelli C
    Sci Total Environ; 2015 Jan; 502():122-32. PubMed ID: 25255199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of hydroacoustic measurements to characterize bottom sediments and guide sampling and remediation of organic contaminants in lake sediments.
    Anderson MA; Conkle JL; Pacheco P; Gan J
    Sci Total Environ; 2013 Aug; 458-460():117-24. PubMed ID: 23644565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the biomass content in sediment on the sediment nutrient flux for a pulsed organic load.
    Wang YX; Li XY; Lee JH
    Mar Pollut Bull; 2008; 57(6-12):681-8. PubMed ID: 18282587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons learned from water/sediment-testing of pharmaceuticals.
    Radke M; Maier MP
    Water Res; 2014 May; 55():63-73. PubMed ID: 24602861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream.
    Veach AM; Bernot MJ
    Sci Total Environ; 2011 Oct; 409(21):4553-63. PubMed ID: 21855963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.