These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20397185)

  • 1. Dendrimers: a mimic natural light-harvesting system.
    Zeng Y; Li YY; Chen J; Yang G; Li Y
    Chem Asian J; 2010 May; 5(5):992-1005. PubMed ID: 20397185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Photofunctional Dendrimers for Solar Energy Conversion.
    Zhang X; Zeng Y; Yu T; Chen J; Yang G; Li Y
    J Phys Chem Lett; 2014 Jul; 5(13):2340-50. PubMed ID: 26279557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.
    Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H
    Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking photosynthesis.
    Gust D; Moore TA
    Science; 1989 Apr; 244(4900):35-41. PubMed ID: 17818844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of energy utilization in light-harvesting dendrimers by the pseudorotaxane formation at periphery.
    Zeng Y; Li Y; Li M; Yang G; Li Y
    J Am Chem Soc; 2009 Jul; 131(25):9100-6. PubMed ID: 19480456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the energy flow in light-harvesting dendrimers.
    Andrews DL; Li S; Rodriguez J; Slota J
    J Chem Phys; 2007 Oct; 127(13):134902. PubMed ID: 17919049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.
    Aratani N; Kim D; Osuka A
    Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers.
    Larsen J; Brüggemann B; Khoury T; Sly J; Crossley MJ; Sundström V; Akesson E
    J Phys Chem A; 2007 Oct; 111(42):10589-97. PubMed ID: 17914756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis.
    Wasielewski MR
    J Org Chem; 2006 Jul; 71(14):5051-66. PubMed ID: 16808492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally layered dendrimers: a new building block and its application to the synthesis of multichromophoric light-harvesting systems.
    Dichtel WR; Hecht S; Fréchet JM
    Org Lett; 2005 Sep; 7(20):4451-4. PubMed ID: 16178556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient shape-persistent pi-conjugated dendrimers for light-harvesting: synthesis, photophysical properties, and energy funneling.
    Wang JL; Yan J; Tang ZM; Xiao Q; Ma Y; Pei J
    J Am Chem Soc; 2008 Jul; 130(30):9952-62. PubMed ID: 18593121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligothiophene dendrimers as new building blocks for optical applications.
    Ramakrishna G; Bhaskar A; Bauerle P; Goodson T
    J Phys Chem A; 2008 Mar; 112(10):2018-26. PubMed ID: 18044856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast fluorescence investigation of excitation energy transfer in different dendritic core branched structures.
    Wang Y; Ranasinghe MI; Goodson T
    J Am Chem Soc; 2003 Aug; 125(32):9562-3. PubMed ID: 12904002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organogels as scaffolds for excitation energy transfer and light harvesting.
    Ajayaghosh A; Praveen VK; Vijayakumar C
    Chem Soc Rev; 2008 Jan; 37(1):109-22. PubMed ID: 18197337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex.
    D'Souza F; Smith PM; Zandler ME; McCarty AL; Itou M; Araki Y; Ito O
    J Am Chem Soc; 2004 Jun; 126(25):7898-907. PubMed ID: 15212538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis(perylenediimide).
    Li X; Sinks LE; Rybtchinski B; Wasielewski MR
    J Am Chem Soc; 2004 Sep; 126(35):10810-1. PubMed ID: 15339143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems.
    Balaban TS
    Acc Chem Res; 2005 Aug; 38(8):612-23. PubMed ID: 16104684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae.
    Polívka T; Hiller RG; Frank HA
    Arch Biochem Biophys; 2007 Feb; 458(2):111-20. PubMed ID: 17098207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.