These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20397717)

  • 1. Vesicle self-assembly by tetrathiafulvalene derivatives in both polar and nonpolar solvents and pseudo-rotaxane mediated vesicle-to-microtube transformation.
    Zhang KD; Wang GT; Zhao X; Jiang XK; Li ZT
    Langmuir; 2010 May; 26(10):6878-82. PubMed ID: 20397717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-controllable amphiphilic [2]rotaxanes.
    Tseng HR; Vignon SA; Celestre PC; Perkins J; Jeppesen JO; Di Fabio A; Ballardini R; Gandolfi MT; Venturi M; Balzani V; Stoddart JF
    Chemistry; 2004 Jan; 10(1):155-72. PubMed ID: 14695561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor.
    Zhao YL; Aprahamian I; Trabolsi A; Erina N; Stoddart JF
    J Am Chem Soc; 2008 May; 130(20):6348-50. PubMed ID: 18444642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene.
    Hartlieb KJ; Liu WG; Fahrenbach AC; Blackburn AK; Frasconi M; Hafezi N; Dey SK; Sarjeant AA; Stern CL; Goddard WA; Stoddart JF
    Chemistry; 2016 Feb; 22(8):2736-45. PubMed ID: 26784535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-driven multicomponent molecular shuttle.
    Saha S; Flood AH; Stoddart JF; Impellizzeri S; Silvi S; Venturi M; Credi A
    J Am Chem Soc; 2007 Oct; 129(40):12159-71. PubMed ID: 17880069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistimuli responsive micelles formed by a tetrathiafulvalene-functionalized amphiphile.
    Wang XJ; Xing LB; Wang F; Wang GX; Chen B; Tung CH; Wu LZ
    Langmuir; 2011 Jul; 27(14):8665-71. PubMed ID: 21644575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of vesicles from amphiphilic aromatic amide-based oligomers.
    Xu YX; Wang GT; Zhao X; Jiang XK; Li ZT
    Langmuir; 2009 Mar; 25(5):2684-8. PubMed ID: 19437750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organogelators based on TTF supramolecular assemblies: synthesis, characterization, and conductive property.
    Wang XJ; Xing LB; Cao WN; Li XB; Chen B; Tung CH; Wu LZ
    Langmuir; 2011 Jan; 27(2):774-81. PubMed ID: 21142103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules.
    Nygaard S; Laursen BW; Flood AH; Hansen CN; Jeppesen JO; Stoddart JF
    Chem Commun (Camb); 2006 Jan; (2):144-6. PubMed ID: 16372086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of three-dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization.
    Tian J; Ding YD; Zhou TY; Zhang KD; Zhao X; Wang H; Zhang DW; Liu Y; Li ZT
    Chemistry; 2014 Jan; 20(2):575-84. PubMed ID: 24302551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular shuttles based on tetrathiafulvalene units and 1,5-dioxynaphthalene ring systems.
    Kang S; Vignon SA; Tseng HR; Stoddart JF
    Chemistry; 2004 May; 10(10):2555-64. PubMed ID: 15146527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding studies between tetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene).
    Nielsen MB; Jeppesen JO; Lau J; Lomholt C; Damgaard D; Jacobsen JP; Becher J; Stoddart JF
    J Org Chem; 2001 May; 66(10):3559-63. PubMed ID: 11348145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-responsive vesicles formed by an amphiphile containing two tetrathiafulvalene units in aqueous solution.
    Wang XJ; Xing LB; Chen B; Quan Y; Tung CH; Wu LZ
    Org Biomol Chem; 2016 Jan; 14(1):65-8. PubMed ID: 26631935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-assisted organized structures based on amphiphilic anion-responsive pi-conjugated systems.
    Maeda H; Ito Y; Haketa Y; Eifuku N; Lee E; Lee M; Hashishin T; Kaneko K
    Chemistry; 2009; 15(15):3706-19. PubMed ID: 19222069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template effect of tetrathiafulvalene in the formation of cyclobis(paraquat-p-phenylene).
    Doddi G; Ercolani G; Mencarelli P; Piermattei A
    J Org Chem; 2005 Apr; 70(9):3761-4. PubMed ID: 15845025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of self-assembled chains of tetrathiafulvalene on a Cu(100) surface.
    Wang Y; Urban C; Rodríguez-Fernández J; Gallego JM; Otero R; Martín N; Miranda R; Alcamí M; Martín F
    J Phys Chem A; 2011 Nov; 115(45):13080-7. PubMed ID: 21954886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular tethering or aggregation: is the existence of charge-transfer bands indicative of the formation of blue-box/tetrathiafulvalene inclusion complexes?
    Tejerina B; Gothard CM; Grzybowski BA
    Chemistry; 2012 Apr; 18(18):5606-11. PubMed ID: 22454368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators.
    Kitamura T; Nakaso S; Mizoshita N; Tochigi Y; Shimomura T; Moriyama M; Ito K; Kato T
    J Am Chem Soc; 2005 Oct; 127(42):14769-75. PubMed ID: 16231931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-responsive reverse vesicles self-assembled by pseudo[2]rotaxanes for tunable dye release.
    Zhang KD; Zhou TY; Zhao X; Jiang XK; Li ZT
    Langmuir; 2012 Oct; 28(42):14839-44. PubMed ID: 23043416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane.
    Jensen M; Kristensen R; Andersen SS; Bendixen D; Jeppesen JO
    Chemistry; 2020 May; 26(28):6165-6175. PubMed ID: 32049376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.