These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20398241)
1. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Pietrini F; Zacchini M; Iori V; Pietrosanti L; Ferretti M; Massacci A Plant Biol (Stuttg); 2010 Mar; 12(2):355-63. PubMed ID: 20398241 [TBL] [Abstract][Full Text] [Related]
2. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
3. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Gaudet M; Pietrini F; Beritognolo I; Iori V; Zacchini M; Massacci A; Mugnozza GS; Sabatti M Tree Physiol; 2011 Dec; 31(12):1309-18. PubMed ID: 21949013 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
5. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005 [TBL] [Abstract][Full Text] [Related]
6. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism. Yu XZ; Gu JD Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236 [TBL] [Abstract][Full Text] [Related]
7. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Liu X; Peng K; Wang A; Lian C; Shen Z Chemosphere; 2010 Feb; 78(9):1136-41. PubMed ID: 20060149 [TBL] [Abstract][Full Text] [Related]
8. Early responses to cadmium of two poplar clones that differ in stress tolerance. Di Baccio D; Castagna A; Tognetti R; Ranieri A; Sebastiani L J Plant Physiol; 2014 Nov; 171(18):1693-705. PubMed ID: 25213704 [TBL] [Abstract][Full Text] [Related]
9. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study. Marmiroli M; Imperiale D; Maestri E; Marmiroli N Chemosphere; 2013 Oct; 93(7):1333-44. PubMed ID: 23981839 [TBL] [Abstract][Full Text] [Related]
10. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field]. Jiang CD; Gao HY; Zou Q; Jiang GM Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692 [TBL] [Abstract][Full Text] [Related]
11. Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis of Elsholtzia argyi--A Cadmium Accumulating Plant. Li S; Yang W; Yang T; Chen Y; Ni W Int J Phytoremediation; 2015; 17(1-6):85-92. PubMed ID: 25174428 [TBL] [Abstract][Full Text] [Related]
12. [Photosynthesis and oxidative stress of leaves at different positions in Amomum villosum Lour]. Li Z; Feng YL Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):546-52. PubMed ID: 15627709 [TBL] [Abstract][Full Text] [Related]
13. Characterization of cadmium accumulation in willow as a woody metal accumulator using synchrotron radiation-based X-ray microanalyses. Harada E; Hokura A; Takada S; Baba K; Terada Y; Nakai I; Yazaki K Plant Cell Physiol; 2010 May; 51(5):848-53. PubMed ID: 20378764 [TBL] [Abstract][Full Text] [Related]
14. Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Wang C; Sun Q; Wang L Environ Toxicol; 2009 Jun; 24(3):271-8. PubMed ID: 18655189 [TBL] [Abstract][Full Text] [Related]
15. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides). Miyazawa S; Livingston NJ; Turpin DH J Exp Bot; 2006; 57(2):373-80. PubMed ID: 16172139 [TBL] [Abstract][Full Text] [Related]
16. The impact of blue light on leaf mesophyll conductance. Loreto F; Tsonev T; Centritto M J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388 [TBL] [Abstract][Full Text] [Related]
17. VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Teuber M; Zimmer I; Kreuzwieser J; Ache P; Polle A; Rennenberg H; Schnitzler JP Plant Biol (Stuttg); 2008 Jan; 10(1):86-96. PubMed ID: 18211549 [TBL] [Abstract][Full Text] [Related]
18. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Bagard M; Le Thiec D; Delacote E; Hasenfratz-Sauder MP; Banvoy J; Gérard J; Dizengremel P; Jolivet Y Physiol Plant; 2008 Dec; 134(4):559-74. PubMed ID: 18823329 [TBL] [Abstract][Full Text] [Related]
19. Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Brekken A; Steinnes E Sci Total Environ; 2004 Jun; 326(1-3):181-95. PubMed ID: 15142774 [TBL] [Abstract][Full Text] [Related]
20. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Seth CS; Kumar Chaturvedi P; Misra V Ecotoxicol Environ Saf; 2008 Sep; 71(1):76-85. PubMed ID: 18082263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]