These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20398270)

  • 1. JISTIC: identification of significant targets in cancer.
    Sanchez-Garcia F; Akavia UD; Mozes E; Pe'er D
    BMC Bioinformatics; 2010 Apr; 11():189. PubMed ID: 20398270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of significant aberrations in cancer genome.
    Yuan X; Yu G; Hou X; Shih IeM; Clarke R; Zhang J; Hoffman EP; Wang RR; Zhang Z; Wang Y
    BMC Genomics; 2012 Jul; 13():342. PubMed ID: 22839576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIRAGAA--a methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer.
    Gaire RK; Bailey J; Bearfoot J; Campbell IG; Stuckey PJ; Haviv I
    Bioinformatics; 2010 Jan; 26(2):161-7. PubMed ID: 19933823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.
    Guttman M; Mies C; Dudycz-Sulicz K; Diskin SJ; Baldwin DA; Stoeckert CJ; Grant GR
    PLoS Genet; 2007 Aug; 3(8):e143. PubMed ID: 17722985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic comparison of copy number alterations in four types of female cancer.
    Kaveh F; Baumbusch LO; Nebdal D; Børresen-Dale AL; Lingjærde OC; Edvardsen H; Kristensen VN; Solvang HK
    BMC Cancer; 2016 Nov; 16(1):913. PubMed ID: 27876019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive analysis of large cancer copy number studies with Copy Number Explorer.
    Newman S
    Bioinformatics; 2015 Sep; 31(17):2874-6. PubMed ID: 25957352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for finding consensus breakpoints in the cancer genome from copy number data.
    Toloşi L; Theißen J; Halachev K; Hero B; Berthold F; Lengauer T
    Bioinformatics; 2013 Jul; 29(14):1793-800. PubMed ID: 23716195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNAnova: a new approach for finding recurrent copy number abnormalities in cancer SNP microarray data.
    Ivakhno S; Tavaré S
    Bioinformatics; 2010 Jun; 26(11):1395-402. PubMed ID: 20403815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAFFYS: An Integrated Tool for Comprehensive Analysis of Genomic Aberrations in Tumor Samples.
    Liu Y; Li A; Feng H; Wang M
    PLoS One; 2015; 10(6):e0129835. PubMed ID: 26111017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimum error calibration and normalization for genomic copy number analysis.
    Gao B; Baudis M
    Genomics; 2020 Sep; 112(5):3331-3341. PubMed ID: 32413400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TARGETgene: a tool for identification of potential therapeutic targets in cancer.
    Wu CC; D'Argenio D; Asgharzadeh S; Triche T
    PLoS One; 2012; 7(8):e43305. PubMed ID: 22952662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systems Biology Interpretation of Array Comparative Genomic Hybridization (aCGH) Data through Phylogenetics.
    Abunimer AN; Salazar J; Noursi DP; Abu-Asab MS
    OMICS; 2016 Mar; 20(3):169-79. PubMed ID: 26983023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying cancer driver genes from functional genomics screens.
    Togar T; Desai S; Mishra R; Terwadkar P; Ramteke M; Ranjan M; Kawle D; Sahoo B; Pal A; Upadhyay P; Dutt A
    Swiss Med Wkly; 2020 Feb; 150():w20195. PubMed ID: 32083704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical model-based testing to evaluate the recurrence of genomic aberrations.
    Niida A; Imoto S; Shimamura T; Miyano S
    Bioinformatics; 2012 Jun; 28(12):i115-20. PubMed ID: 22689750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of genomic and transcriptomic microarrays data reveals major correlation between DNA copy number aberrations and gene-loci expression.
    Ortiz-Estevez M; De Las Rivas J; Fontanillo C; Rubio A
    Genomics; 2011 Feb; 97(2):86-93. PubMed ID: 21044881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CGHsweep: an algorithm for analyzing chromosomal aberrations in genome using aCGH profiles.
    Karmaker A; Kwek S
    In Silico Biol; 2007; 7(6):639-49. PubMed ID: 18467776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of recurrent regions of Copy-Number Variants across multiple individuals.
    Mei TS; Salim A; Calza S; Seng KC; Seng CK; Pawitan Y
    BMC Bioinformatics; 2010 Mar; 11():147. PubMed ID: 20307285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.