BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20398420)

  • 1. Excitability changes in the sciatic nerve and triceps surae muscle after spinal cord injury in mice.
    Ahmed Z; Freedland R; Wieraszko A
    J Brachial Plex Peripher Nerve Inj; 2010 Apr; 5():8. PubMed ID: 20398420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal changes in spinal cord injured patients distal to the site of injury.
    Lin CS; Macefield VG; Elam M; Wallin BG; Engel S; Kiernan MC
    Brain; 2007 Apr; 130(Pt 4):985-94. PubMed ID: 17264094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury.
    Thomas CK; Häger CK; Klein CS
    J Neurophysiol; 2017 Feb; 117(2):684-691. PubMed ID: 27852734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R; Perez MA
    J Neurophysiol; 2020 Feb; 123(2):454-461. PubMed ID: 31461361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation.
    Mahrous A; Birch D; Heckman CJ; Tysseling V
    J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37949656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury.
    Thomas CK; Zaidner EY; Calancie B; Broton JG; Bigland-Ritchie BR
    Exp Neurol; 1997 Dec; 148(2):414-23. PubMed ID: 9417821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the monosynaptic stretch reflex in the rat: an in vitro study.
    Kudo N; Yamada T
    J Physiol; 1985 Dec; 369():127-44. PubMed ID: 4093877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury.
    Lee M; Kiernan MC; Macefield VG; Lee BB; Lin CS
    J Neurophysiol; 2015 May; 113(9):3209-18. PubMed ID: 25787956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury.
    Piazza S; Gómez-Soriano J; Bravo-Esteban E; Torricelli D; Avila-Martin G; Galan-Arriero I; Pons JL; Taylor J
    Clin Neurophysiol; 2016 Jun; 127(6):2402-9. PubMed ID: 27178859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats.
    Caron G; Bilchak JN; Côté MP
    J Physiol; 2020 Oct; 598(20):4621-4642. PubMed ID: 32721039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tonic stretch reflex and spastic hypertonia after spinal cord injury.
    Woolacott AJ; Burne JA
    Exp Brain Res; 2006 Sep; 174(2):386-96. PubMed ID: 16680428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voluntary muscle weakness and co-activation after chronic cervical spinal cord injury.
    Thomas CK; Tucker ME; Bigland-Ritchie B
    J Neurotrauma; 1998 Feb; 15(2):149-61. PubMed ID: 9512090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course and extent of recovery in reinnervated motor units of cat triceps surae muscles.
    Gordon T; Stein RB
    J Physiol; 1982 Feb; 323():307-23. PubMed ID: 7097576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive activity of 5-HT
    Tysseling VM; Klein DA; Imhoff-Manuel R; Manuel M; Heckman CJ; Tresch MC
    J Neurophysiol; 2017 Nov; 118(5):2944-2952. PubMed ID: 28877964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles.
    Allum JH; Honegger F
    Exp Brain Res; 1998 Aug; 121(4):478-94. PubMed ID: 9746156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of motor function after spinal cord injury: novel insights into spinal shock.
    Boland RA; Lin CS; Engel S; Kiernan MC
    Brain; 2011 Feb; 134(Pt 2):495-505. PubMed ID: 20952380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological investigation of motor axonal excitability in a mouse model of nerve constriction injury.
    Makker PGS; Keating BA; Lees JG; Burke D; Howells J; Moalem-Taylor G
    J Peripher Nerv Syst; 2021 Mar; 26(1):99-112. PubMed ID: 33432642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury.
    Knikou M; Murray LM
    PLoS One; 2019; 14(9):e0223135. PubMed ID: 31557238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tail muscles become slow but fatigable in chronic sacral spinal rats with spasticity.
    Harris RL; Bobet J; Sanelli L; Bennett DJ
    J Neurophysiol; 2006 Feb; 95(2):1124-33. PubMed ID: 16282205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.