These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20398654)

  • 1. Development of a novel instrument to measure the pulsatile movement of ocular tissues.
    Singh K; Dion C; Costantino S; Wajszilber M; Lesk MR; Ozaki T
    Exp Eye Res; 2010 Jul; 91(1):63-8. PubMed ID: 20398654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of ocular fundus pulsation in healthy subjects using a novel Fourier-domain optical coherence tomography.
    Singh K; Dion C; Wajszilber M; Ozaki T; Lesk MR; Costantino S
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8927-32. PubMed ID: 21969303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral characteristics of longitudinal corneal apex velocities and their relation to the cardiopulmonary system.
    Kasprzak HT; Iskander DR
    Eye (Lond); 2007 Sep; 21(9):1212-9. PubMed ID: 16936640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of pulsatile retinal movements by spectral-domain low-coherence interferometry: influence of age and glaucoma on the pulse wave.
    Dion C; Singh K; Ozaki T; Lesk MR; Costantino S
    PLoS One; 2013; 8(1):e54207. PubMed ID: 23382879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery.
    Jaycock PD; Lobo L; Ibrahim J; Tyrer J; Marshall J
    J Cataract Refract Surg; 2005 Jan; 31(1):175-84. PubMed ID: 15721710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.
    Fingler J; Readhead C; Schwartz DM; Fraser SE
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5055-9. PubMed ID: 18566457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biometric measurements inside the model eye using a two wavelengths Fourier domain low coherence interferometer.
    Birkner S; Einighammer J; Oltrup T; Bende T; Jean B
    Biomed Tech (Berl); 2011 Feb; 56(1):65-71. PubMed ID: 21235395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry.
    Drexler W; Hitzenberger CK; Baumgartner A; Findl O; Sattmann H; Fercher AF
    Exp Eye Res; 1998 Jan; 66(1):25-33. PubMed ID: 9533828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics in longitudinal eye movements and corneal shape.
    Robert Iskander D; Kasprzak HT
    Ophthalmic Physiol Opt; 2006 Nov; 26(6):572-9. PubMed ID: 17040421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer.
    Rohrer K; Frueh BE; Wälti R; Clemetson IA; Tappeiner C; Goldblum D
    Ophthalmology; 2009 Nov; 116(11):2087-92. PubMed ID: 19744720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ophthalmic imaging by spectral optical coherence tomography.
    Wojtkowski M; Bajraszewski T; Gorczyńska I; Targowski P; Kowalczyk A; Wasilewski W; Radzewicz C
    Am J Ophthalmol; 2004 Sep; 138(3):412-9. PubMed ID: 15364223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic in vivo measurement of ocular surface expansion.
    Kowalska MA; Kasprzak HT; Iskander DR; Danielewska M; Mas D
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):674-80. PubMed ID: 21177153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of high-speed videokeratoscopy and ultrasound distance sensing for measuring the longitudinal corneal apex movements.
    Kowalska MA; Kasprzak HT; Iskander DR
    Ophthalmic Physiol Opt; 2009 May; 29(3):227-34. PubMed ID: 19422553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer.
    Luce DA
    J Cataract Refract Surg; 2005 Jan; 31(1):156-62. PubMed ID: 15721708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement.
    Zhou X; Xie J; Shen M; Wang J; Jiang L; Qu J; Lu F
    Vision Res; 2008 Apr; 48(9):1137-43. PubMed ID: 18346775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo biometry in the mouse eye with low coherence interferometry.
    Schmucker C; Schaeffel F
    Vision Res; 2004; 44(21):2445-56. PubMed ID: 15358080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer.
    Kotecha A; Elsheikh A; Roberts CR; Zhu H; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5337-47. PubMed ID: 17122122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.