These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 20398906)
1. Extent and distribution of tibial osteochondral disruption during simulated landing impact with axial tibial rotation restraint. Yeow CH; Lee PV; Goh JC J Biomech; 2010 Jul; 43(10):2010-6. PubMed ID: 20398906 [TBL] [Abstract][Full Text] [Related]
2. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact. Yeow CH; Lee PV; Goh JC J Biomech; 2010 Jan; 43(2):242-7. PubMed ID: 19863961 [TBL] [Abstract][Full Text] [Related]
3. Correlation of axial impact forces with knee joint forces and kinematics during simulated ski-landing. Yeow CH; Kong CY; Lee PV; Goh JC J Sports Sci; 2011 Aug; 29(11):1143-51. PubMed ID: 21774750 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of anterior tibial translation or axial tibial rotation prevents anterior cruciate ligament failure during impact compression. Yeow CH; Rubab SK; Lee PV; Goh JC Am J Sports Med; 2009 Apr; 37(4):813-21. PubMed ID: 19204361 [TBL] [Abstract][Full Text] [Related]
5. Restrained tibial rotation may prevent ACL injury during landing at different flexion angles. Mokhtarzadeh H; Ng A; Yeow CH; Oetomo D; Malekipour F; Lee PV Knee; 2015 Jan; 22(1):24-9. PubMed ID: 25456655 [TBL] [Abstract][Full Text] [Related]
6. Repeated application of incremental landing impact loads to intact knee joints induces anterior cruciate ligament failure and tibiofemoral cartilage deformation and damage: A preliminary cadaveric investigation. Yeow CH; Ng KS; Cheong CH; Lee PV; Goh JC J Biomech; 2009 May; 42(8):972-81. PubMed ID: 19380143 [TBL] [Abstract][Full Text] [Related]
7. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. Meyer EG; Baumer TG; Slade JM; Smith WE; Haut RC Am J Sports Med; 2008 Oct; 36(10):1966-77. PubMed ID: 18490469 [TBL] [Abstract][Full Text] [Related]
8. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Kanamori A; Woo SL; Ma CB; Zeminski J; Rudy TW; Li G; Livesay GA Arthroscopy; 2000 Sep; 16(6):633-9. PubMed ID: 10976125 [TBL] [Abstract][Full Text] [Related]
9. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
10. [Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament. Analysis with magnetic resonance]. De Maria M; Barbiera F; Lo Casto A; Iovane A; Rossello M; Sparacia G; Lagalla R Radiol Med; 1996 Jun; 91(6):693-9. PubMed ID: 8830351 [TBL] [Abstract][Full Text] [Related]
11. Anterior cruciate ligament failure and cartilage damage during knee joint compression: a preliminary study based on the porcine model. Yeow CH; Cheong CH; Ng KS; Lee PV; Goh JC Am J Sports Med; 2008 May; 36(5):934-42. PubMed ID: 18227229 [TBL] [Abstract][Full Text] [Related]
12. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Deneweth JM; Bey MJ; McLean SG; Lock TR; Kolowich PA; Tashman S Am J Sports Med; 2010 Sep; 38(9):1820-8. PubMed ID: 20472756 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Nagano Y; Ida H; Akai M; Fukubayashi T Knee; 2009 Mar; 16(2):153-8. PubMed ID: 19110433 [TBL] [Abstract][Full Text] [Related]
14. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Li G; Papannagari R; DeFrate LE; Yoo JD; Park SE; Gill TJ Acta Orthop; 2007 Jun; 78(3):355-60. PubMed ID: 17611849 [TBL] [Abstract][Full Text] [Related]
15. Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Nelitz M; Seitz AM; Bauer J; Reichel H; Ignatius A; Dürselen L Clin Biomech (Bristol); 2013 Mar; 28(3):285-90. PubMed ID: 23489478 [TBL] [Abstract][Full Text] [Related]
16. Damage and degenerative changes in menisci-covered and exposed tibial osteochondral regions after simulated landing impact compression-a porcine study. Yeow CH; Lau ST; Lee PV; Goh JC J Orthop Res; 2009 Aug; 27(8):1100-8. PubMed ID: 19205043 [TBL] [Abstract][Full Text] [Related]
17. Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. Ahmed AM; Burke DL; Duncan NA; Chan KH J Orthop Res; 1992 Nov; 10(6):854-67. PubMed ID: 1403300 [TBL] [Abstract][Full Text] [Related]
18. Anterior tibiofemoral intersegmental forces during landing are predicted by passive restraint measures in women. Schmitz RJ; Sauret JJ; Shultz SJ Knee; 2013 Dec; 20(6):493-9. PubMed ID: 23769139 [TBL] [Abstract][Full Text] [Related]
19. Excessive compression of the human tibio-femoral joint causes ACL rupture. Meyer EG; Haut RC J Biomech; 2005 Nov; 38(11):2311-6. PubMed ID: 16154419 [TBL] [Abstract][Full Text] [Related]
20. Navigated knee kinematics after tear of the ACL and its secondary restraints: preliminary results. Monaco E; Maestri B; Labianca L; Speranza A; Kelly MJ; D'Arrigo C; Ferretti A Orthopedics; 2010 Oct; 33(10 Suppl):87-93. PubMed ID: 20954638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]