These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 20399217)
1. On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. Serra R; Villani M; Barbieri A; Kauffman SA; Colacci A J Theor Biol; 2010 Jul; 265(2):185-93. PubMed ID: 20399217 [TBL] [Abstract][Full Text] [Related]
2. Noisy attractors and ergodic sets in models of gene regulatory networks. Ribeiro AS; Kauffman SA J Theor Biol; 2007 Aug; 247(4):743-55. PubMed ID: 17543998 [TBL] [Abstract][Full Text] [Related]
3. Counting and classifying attractors in high dimensional dynamical systems. Bagley RJ; Glass L J Theor Biol; 1996 Dec; 183(3):269-84. PubMed ID: 9015450 [TBL] [Abstract][Full Text] [Related]
6. Generating Boolean networks with a prescribed attractor structure. Pal R; Ivanov I; Datta A; Bittner ML; Dougherty ER Bioinformatics; 2005 Nov; 21(21):4021-5. PubMed ID: 16150807 [TBL] [Abstract][Full Text] [Related]
7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
8. Boolean networks with variable number of inputs (K). Skarja M; Remic B; Jerman I Chaos; 2004 Jun; 14(2):205-16. PubMed ID: 15189048 [TBL] [Abstract][Full Text] [Related]
10. Distribution and enumeration of attractors in probabilistic Boolean networks. Hayashida M; Tamura T; Akutsu T; Ching WK; Cong Y IET Syst Biol; 2009 Nov; 3(6):465-74. PubMed ID: 19947772 [TBL] [Abstract][Full Text] [Related]
11. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Huang S; Ingber DE Exp Cell Res; 2000 Nov; 261(1):91-103. PubMed ID: 11082279 [TBL] [Abstract][Full Text] [Related]
12. Attractor analysis of asynchronous Boolean models of signal transduction networks. Saadatpour A; Albert I; Albert R J Theor Biol; 2010 Oct; 266(4):641-56. PubMed ID: 20659480 [TBL] [Abstract][Full Text] [Related]
13. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications. Li XY; Yang GW; Zheng DS; Guo WS; Hung WN Genet Mol Res; 2015 Apr; 14(2):4238-44. PubMed ID: 25966195 [TBL] [Abstract][Full Text] [Related]
14. From topology to dynamics in biochemical networks. Fox JJ; Hill CC Chaos; 2001 Dec; 11(4):809-815. PubMed ID: 12779520 [TBL] [Abstract][Full Text] [Related]
15. Random maps and attractors in random Boolean networks. Samuelsson B; Troein C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046112. PubMed ID: 16383473 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of attractors and basins of asynchronous random Boolean networks. Yang M; Chu T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056105. PubMed ID: 23004819 [TBL] [Abstract][Full Text] [Related]
17. Isologous diversification for robust development of cell society. Kaneko K; Yomo T J Theor Biol; 1999 Aug; 199(3):243-56. PubMed ID: 10433890 [TBL] [Abstract][Full Text] [Related]
18. A proposal for using the ensemble approach to understand genetic regulatory networks. Kauffman S J Theor Biol; 2004 Oct; 230(4):581-90. PubMed ID: 15363677 [TBL] [Abstract][Full Text] [Related]
19. Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network. Yu L; Watterson S; Marshall S; Ghazal P Mol Biosyst; 2008 Oct; 4(10):1024-30. PubMed ID: 19082142 [TBL] [Abstract][Full Text] [Related]
20. On the robustness of update schedules in Boolean networks. Aracena J; Goles E; Moreira A; Salinas L Biosystems; 2009 Jul; 97(1):1-8. PubMed ID: 19505631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]