These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20399481)

  • 1. Iron speciation and iron species transformation in activated sludge membrane bioreactors.
    Wang XM; Waite TD
    Water Res; 2010 Jun; 44(11):3511-21. PubMed ID: 20399481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge.
    Wu H; Ikeda-Ohno A; Wang Y; Waite TD
    Water Res; 2015 Jun; 76():213-26. PubMed ID: 25900910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment.
    Li RH; Wang XM; Li XY
    Water Res; 2018 Feb; 129():402-412. PubMed ID: 29175759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of mass transfer effects on the inetics of nitrifiers.
    Manser R; Gujer W; Siegrist H
    Water Res; 2005 Nov; 39(19):4633-42. PubMed ID: 16290185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the microbiology of activated sludge upon the addition of iron salts with or without nitrite or nitrate.
    Philips S; Verstraete W
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(1):35-50. PubMed ID: 12491968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs.
    Satoh H; Nakamura Y; Ono H; Okabe S
    Biotechnol Bioeng; 2003 Sep; 83(5):604-7. PubMed ID: 12827702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of membrane bioreactor (MBR) system with sludge Fenton oxidation process for minimization of excess sludge production.
    He MH; Wei CH
    J Hazard Mater; 2010 Apr; 176(1-3):597-601. PubMed ID: 20034736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.
    Larese-Casanova P; Cwiertny DM; Scherer MM
    Environ Sci Technol; 2010 May; 44(10):3765-71. PubMed ID: 20408543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of linear alkylbenzene sulfonates removal in conventional activated sludge systems and membrane bioreactors.
    De Wever H; Van Roy S; Dotremont C; Miller J; Knepper T
    Water Sci Technol; 2004; 50(5):219-25. PubMed ID: 15497851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions.
    van der Maas P; van de Sandt T; Klapwijk B; Lens P
    Biotechnol Prog; 2003; 19(4):1323-8. PubMed ID: 12892497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfide-iron interactions in domestic wastewater from a gravity sewer.
    Haaning Nielsen A; Lens P; Vollertsen J; Hvitved-Jacobsen T
    Water Res; 2005 Jul; 39(12):2747-55. PubMed ID: 15978649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.