BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20399645)

  • 1. Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440.
    Wang JP; Wu LX; Xu F; Lv J; Jin HJ; Chen SF
    Bioresour Technol; 2010 Aug; 101(16):6404-9. PubMed ID: 20399645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride.
    Tao L; Dong HJ; Chen X; Chen SF; Wang TH
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):573-8. PubMed ID: 18575855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of New Ethylene-Producing Bacteria, Pseudomonas syringae pvs. cannabina and sesami, by PCR Amplification of Genes for the Ethylene-Forming Enzyme.
    Sato M; Watanabe K; Yazawa M; Takikawa Y; Nishiyama K
    Phytopathology; 1997 Dec; 87(12):1192-6. PubMed ID: 18945017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene production with engineered Synechocystis sp PCC 6803 strains.
    Veetil VP; Angermayr SA; Hellingwerf KJ
    Microb Cell Fact; 2017 Feb; 16(1):34. PubMed ID: 28231787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Ethylene Production by Pseudomonas syringae and Ralstonia solanacearum.
    Weingart H; Völksch B; Ullrich MS
    Phytopathology; 1999 May; 89(5):360-5. PubMed ID: 18944747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Conjugative Plasmid Carrying the efe Gene for the Ethylene-Forming Enzyme Isolated from Pseudomonas syringae pv. glycinea.
    Watanabe K; Nagahama K; Sato M
    Phytopathology; 1998 Nov; 88(11):1205-9. PubMed ID: 18944855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene.
    Chen X; Liang Y; Hua J; Tao L; Qin W; Chen S
    Int J Biol Sci; 2010 Feb; 6(1):96-106. PubMed ID: 20150979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Ethylene Production in Virulence of Pseudomonas syringae pvs. glycinea and phaseolicola.
    Weingart H; Ullrich H; Geider K; Völksch B
    Phytopathology; 2001 May; 91(5):511-8. PubMed ID: 18943596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.
    Johansson N; Persson KO; Quehl P; Norbeck J; Larsson C
    FEMS Yeast Res; 2014 Nov; 14(7):1110-8. PubMed ID: 25195797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recipient range of IncP-7 conjugative plasmid pCAR2 from Pseudomonas putida HS01 is broader than from other Pseudomonas strains.
    Shintani M; Habe H; Tsuda M; Omori T; Yamane H; Nojiri H
    Biotechnol Lett; 2005 Dec; 27(23-24):1847-53. PubMed ID: 16328978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene formation and phenotypic analysis of transgenic tobacco plants expressing a bacterial ethylene-forming enzyme.
    Araki S; Matsuoka M; Tanaka M; Ogawa T
    Plant Cell Physiol; 2000 Mar; 41(3):327-34. PubMed ID: 10805596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442.
    Cai L; Yuan MQ; Liu F; Jian J; Chen GQ
    Bioresour Technol; 2009 Apr; 100(7):2265-70. PubMed ID: 19103481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rapid detection of Pseudomonas aeruginosa by the fluorescence quantitative PCR assay targeting 16S rDNA].
    Xue LJ; Wang YZ; Ren H; Tong YM; Zhao P; Zhu SY; Qi ZT
    Sheng Wu Gong Cheng Xue Bao; 2006 Sep; 22(5):789-94. PubMed ID: 17037203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene-producing bacteria that ripen fruit.
    Digiacomo F; Girelli G; Aor B; Marchioretti C; Pedrotti M; Perli T; Tonon E; Valentini V; Avi D; Ferrentino G; Dorigato A; Torre P; Jousson O; Mansy SS; Del Bianco C
    ACS Synth Biol; 2014 Dec; 3(12):935-8. PubMed ID: 25393892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440.
    Lee Y; Peña-Llopis S; Kang YS; Shin HD; Demple B; Madsen EL; Jeon CO; Park W
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1246-54. PubMed ID: 16360643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Screening and identification of a strain for hydroxylation of nicotinic acid].
    Lu WH; Xu L; Dai YJ; Yuan S
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):6-9. PubMed ID: 15847152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of the 16S-23S rRNA gene internal transcribed spacer in Pseudomonas avellanae strains.
    Natalini E; Scortichini M
    FEMS Microbiol Lett; 2007 Jun; 271(2):274-80. PubMed ID: 17442015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12.
    Tan GY; Chen CL; Ge L; Li L; Tan SN; Wang JY
    Microbes Environ; 2015; 30(1):76-85. PubMed ID: 25740622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction of a versatile degrading bacteria Pseudomonas putida KT2440-DOP and its degrading characteristics].
    Gu LF; He J; Huang X; Jia KZ; Li SP
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):763-6. PubMed ID: 17172025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.
    Franden MA; Jayakody LN; Li WJ; Wagner NJ; Cleveland NS; Michener WE; Hauer B; Blank LM; Wierckx N; Klebensberger J; Beckham GT
    Metab Eng; 2018 Jul; 48():197-207. PubMed ID: 29885475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.