BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 20399776)

  • 1. Nocodazole induces mitotic cell death with apoptotic-like features in Saccharomyces cerevisiae.
    Endo K; Mizuguchi M; Harata A; Itoh G; Tanaka K
    FEBS Lett; 2010 Jun; 584(11):2387-92. PubMed ID: 20399776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.
    Nishiyama A; Dey A; Tamura T; Ko M; Ozato K
    PLoS One; 2012; 7(5):e34719. PubMed ID: 22567088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbing mitosis for anti-cancer therapy: is cell death the only answer?
    Haschka M; Karbon G; Fava LL; Villunger A
    EMBO Rep; 2018 Mar; 19(3):. PubMed ID: 29459486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of cell populations in metaphase, anaphase, and telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in proteins during mitotic progression.
    Matsui Y; Nakayama Y; Okamoto M; Fukumoto Y; Yamaguchi N
    Eur J Cell Biol; 2012 May; 91(5):413-9. PubMed ID: 22365812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.
    Vasquez RJ; Howell B; Yvon AM; Wadsworth P; Cassimeris L
    Mol Biol Cell; 1997 Jun; 8(6):973-85. PubMed ID: 9201709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducing yeast cell synchrony: nocodazole arrest.
    Amberg DC; Burke DJ; Strathern JN
    CSH Protoc; 2006 Jun; 2006(1):. PubMed ID: 22485576
    [No Abstract]   [Full Text] [Related]  

  • 7. Nocodazole action on tubulin assembly, axonal ultrastructure and fast axoplasmic transport.
    Samson F; Donoso JA; Heller-Bettinger I; Watson D; Himes RH
    J Pharmacol Exp Ther; 1979 Mar; 208(3):411-7. PubMed ID: 85702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules in cell migration.
    Etienne-Manneville S
    Annu Rev Cell Dev Biol; 2013; 29():471-99. PubMed ID: 23875648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim reduces the association of Bcl-2 with Bak or Bim, provoking Bak activation and mitochondrial apoptosis in nocodazole-treated Jurkat T cells.
    Han CR; Jun do Y; Lee JY; Kim YH
    Apoptosis; 2014 Jan; 19(1):224-40. PubMed ID: 24166139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules and actin filaments: dynamic targets for cancer chemotherapy.
    Jordan MA; Wilson L
    Curr Opin Cell Biol; 1998 Feb; 10(1):123-30. PubMed ID: 9484604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells.
    Zieve GW; Turnbull D; Mullins JM; McIntosh JR
    Exp Cell Res; 1980 Apr; 126(2):397-405. PubMed ID: 6153987
    [No Abstract]   [Full Text] [Related]  

  • 12. Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2).
    Eilers U; Klumperman J; Hauri HP
    J Cell Biol; 1989 Jan; 108(1):13-22. PubMed ID: 2642910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The discovery of MHC restriction.
    Zinkernagel RM; Doherty PC
    Immunol Today; 1997 Jan; 18(1):14-7. PubMed ID: 9018968
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell surface alterations by taxol associated with abnormal morphogenesis in the chick embryo.
    Patwardhan V; Ghate HV; Ghaskadbi S
    Cell Biol Int; 1996 Aug; 20(8):545-52. PubMed ID: 8938988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia.
    Wu JH; Lee JC; Ho CC; Chiu PW; Sun CH
    Biol Direct; 2023 Apr; 18(1):20. PubMed ID: 37095576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle.
    Greenwood BL; Stuart DT
    Methods Mol Biol; 2022; 2579():145-168. PubMed ID: 36045205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors.
    Grosfeld EV; Bidiuk VA; Mitkevich OV; Ghazy ESMO; Kushnirov VV; Alexandrov AI
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-dependent regulation of mitochondrial dynamics by DJ-1 paralogs in Saccharomyces cerevisiae.
    Bankapalli K; Vishwanathan V; Susarla G; Sunayana N; Saladi S; Peethambaram D; D'Silva P
    Redox Biol; 2020 May; 32():101451. PubMed ID: 32070881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytological and genetic consequences for the progeny of a mitotic catastrophe provoked by Topoisomerase II deficiency.
    Ramos-Pérez C; Dominska M; Anaissi-Afonso L; Cazorla-Rivero S; Quevedo O; Lorenzo-Castrillejo I; Petes TD; Machín F
    Aging (Albany NY); 2019 Dec; 11(23):11686-11721. PubMed ID: 31812950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the involvement of Slx5 in the apoptotic response to chronic activation of the spindle assembly checkpoint.
    Atalay PB; Çavuşoğlu EE; Aşci Ö; Aygüneş D
    Turk J Biol; 2019; 43(3):189-197. PubMed ID: 31320817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.