These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20399806)

  • 1. Ten ways to improve the quality of descriptions of whole-animal movement.
    Benjamini Y; Lipkind D; Horev G; Fonio E; Kafkafi N; Golani I
    Neurosci Biobehav Rev; 2010 Jul; 34(8):1351-65. PubMed ID: 20399806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texture of locomotor path: a replicable characterization of a complex behavioral phenotype.
    Kafkafi N; Elmer GI
    Genes Brain Behav; 2005 Oct; 4(7):431-43. PubMed ID: 16176389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats.
    Hines DJ; Whishaw IQ
    Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test.
    Gharbawie OA; Whishaw PA; Whishaw IQ
    Behav Brain Res; 2004 May; 151(1-2):125-35. PubMed ID: 15084428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests.
    Brooks SP; Pask T; Jones L; Dunnett SB
    Genes Brain Behav; 2005 Jul; 4(5):307-17. PubMed ID: 16011577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks.
    Ennaceur A; Michalikova S; Bradford A; Ahmed S
    Behav Brain Res; 2005 Apr; 159(2):247-66. PubMed ID: 15817188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enriched rearing facilitates spatial exploration in northern bobwhite (Colinus virginianus) neonates.
    Lazic M; Schneider SM; Lickliter R
    Dev Psychobiol; 2007 Jul; 49(5):548-51. PubMed ID: 17577241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease.
    Koob AO; Cirillo J; Babbs CF
    J Neurosci Methods; 2006 Oct; 157(2):330-6. PubMed ID: 16735064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proposed architecture for the neural representation of spatial context.
    Jeffery KJ; Anderson MI; Hayman R; Chakraborty S
    Neurosci Biobehav Rev; 2004 Apr; 28(2):201-18. PubMed ID: 15172764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual and sex differences in learning abilities of ravens.
    Range F; Bugnyar T; Schlögl C; Kotrschal K
    Behav Processes; 2006 Jul; 73(1):100-6. PubMed ID: 16675158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of novelty detection in mice targeted for the Chl1 gene.
    Pratte M; Jamon M
    Physiol Behav; 2009 Jun; 97(3-4):394-400. PubMed ID: 19303029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of anxiety: responses of mice to novelty and open spaces in a 3D maze.
    Ennaceur A; Michalikova S; van Rensburg R; Chazot PL
    Behav Brain Res; 2006 Nov; 174(1):9-38. PubMed ID: 16919819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hitchhiker's guide to behavioral analysis in laboratory rodents.
    Sousa N; Almeida OF; Wotjak CT
    Genes Brain Behav; 2006; 5 Suppl 2():5-24. PubMed ID: 16681797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating wall guidance and attraction in mouse free locomotor behavior.
    Horev G; Benjamini Y; Sakov A; Golani I
    Genes Brain Behav; 2007 Feb; 6(1):30-41. PubMed ID: 17233639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory.
    Dalziel BD; Morales JM; Fryxell JM
    Am Nat; 2008 Aug; 172(2):248-58. PubMed ID: 18598199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and neurochemical effects of acute putrescine depletion by difluoromethylornithine in rats.
    Gupta N; Zhang H; Liu P
    Neuroscience; 2009 Jul; 161(3):691-706. PubMed ID: 19348875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks.
    Yeshenko O; Guazzelli A; Mizumori SJ
    Behav Neurosci; 2004 Aug; 118(4):751-69. PubMed ID: 15301602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fuzzy-boundary arena--a method for constraining an animal's range in spatial experiments without using walls.
    Hayman RM; Donnett JG; Jeffery KJ
    J Neurosci Methods; 2008 Jan; 167(2):184-90. PubMed ID: 17950465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seizures in the developing brain cause adverse long-term effects on spatial learning and anxiety.
    Sayin U; Sutula TP; Stafstrom CE
    Epilepsia; 2004 Dec; 45(12):1539-48. PubMed ID: 15571512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.