These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20400431)

  • 1. Special segment: soft tissue matrices--Bilayered bioengineered skin substitute to augment wound healing.
    DeCarbo WT
    Foot Ankle Spec; 2009 Dec; 2(6):303-5. PubMed ID: 20400431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special segment: soft tissue matrices--Apligraf bilayered skin substitute to augment healing of chronic wounds in diabetic patients.
    DeCarbo WT
    Foot Ankle Spec; 2009 Dec; 2(6):299-302. PubMed ID: 20400430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering in wound repair.
    Falanga VJ
    Adv Skin Wound Care; 2000; 13(2 Suppl):15-9. PubMed ID: 11074998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apligraf in the treatment of neuropathic diabetic foot ulcers.
    Edmonds M;
    Int J Low Extrem Wounds; 2009 Mar; 8(1):11-8. PubMed ID: 19189997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effects of treating diabetic wounds with engineered skin substitutes.
    Waugh HV; Sherratt JA
    Wound Repair Regen; 2007; 15(4):556-65. PubMed ID: 17650100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel treatment strategy for leg and sternal wound complications after coronary artery bypass graft surgery: bioengineered Apligraf.
    Allie DE; Hebert CJ; Lirtzman MD; Wyatt CH; Keller VA; Souther SM; Allie AA; Mitran EV; Walker CM
    Ann Thorac Surg; 2004 Aug; 78(2):673-8; discussion 678. PubMed ID: 15276544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical classification of bioengineered skin use and its correlation with healing of diabetic and venous ulcers.
    Saap LJ; Donohue K; Falanga V
    Dermatol Surg; 2004 Aug; 30(8):1095-100. PubMed ID: 15274699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficacy of Apligraf in the treatment of diabetic foot ulcers.
    Dinh TL; Veves A
    Plast Reconstr Surg; 2006 Jun; 117(7 Suppl):152S-157S; discussion 158S-159S. PubMed ID: 16799383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous full-thickness skin substitute for healing chronic wounds.
    Gibbs S; van den Hoogenband HM; Kirtschig G; Richters CD; Spiekstra SW; Breetveld M; Scheper RJ; de Boer EM
    Br J Dermatol; 2006 Aug; 155(2):267-74. PubMed ID: 16882162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Best-practice algorithms for the use of a bilayered living cell therapy (Apligraf) in the treatment of lower-extremity ulcers.
    Cavorsi J; Vicari F; Wirthlin DJ; Ennis W; Kirsner R; O'Connell SM; Steinberg J; Falanga V
    Wound Repair Regen; 2006; 14(2):102-9. PubMed ID: 16630097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of living bilayered cell therapy (Apligraf) for heel ulcers.
    Karr J
    Adv Skin Wound Care; 2008 Jun; 21(6):270-4. PubMed ID: 18525250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes.
    Hirt-Burri N; Scaletta C; Gerber S; Pioletti DP; Applegate LA
    Artif Organs; 2008 Jul; 32(7):509-18. PubMed ID: 18638304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers.
    Zelen CM; Gould L; Serena TE; Carter MJ; Keller J; Li WW
    Int Wound J; 2015 Dec; 12(6):724-32. PubMed ID: 25424146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin tissue engineering.
    Mansbridge J
    J Biomater Sci Polym Ed; 2008; 19(8):955-68. PubMed ID: 18644224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a bioengineered skin equivalent for the management of difficult skin defects after pediatric multivisceral transplantation.
    Drosou A; Kirsner RS; Kato T; Mittal N; Al-Niami A; Miller B; Tzakis AG
    J Am Acad Dermatol; 2005 May; 52(5):854-8. PubMed ID: 15858477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: a pilot study.
    Hu S; Kirsner RS; Falanga V; Phillips T; Eaglstein WH
    Wound Repair Regen; 2006; 14(4):427-33. PubMed ID: 16939570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery.
    Gohari S; Gambla C; Healey M; Spaulding G; Gordon KB; Swan J; Cook B; West DP; Lapiere JC
    Dermatol Surg; 2002 Dec; 28(12):1107-14; discussion 1114. PubMed ID: 12472488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High bacterial load in asymptomatic diabetic patients with neurotrophic ulcers retards wound healing after application of Dermagraft.
    Browne AC; Vearncombe M; Sibbald RG
    Ostomy Wound Manage; 2001 Oct; 47(10):44-9. PubMed ID: 11890078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioengineered alternative tissues and hyperbaric oxygen in lower extremity wound healing.
    Kim PJ; Heilala M; Steinberg JS; Weinraub GM
    Clin Podiatr Med Surg; 2007 Jul; 24(3):529-46, x. PubMed ID: 17613390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound bed score and its correlation with healing of chronic wounds.
    Falanga V; Saap LJ; Ozonoff A
    Dermatol Ther; 2006; 19(6):383-90. PubMed ID: 17199681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.