BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 20400549)

  • 1. Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase.
    Litzinger S; Duckworth A; Nitzsche K; Risinger C; Wittmann V; Mayer C
    J Bacteriol; 2010 Jun; 192(12):3132-43. PubMed ID: 20400549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase.
    Borisova M; Gaupp R; Duckworth A; Schneider A; Dalügge D; Mühleck M; Deubel D; Unsleber S; Yu W; Muth G; Bischoff M; Götz F; Mayer C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in
    Kluj RM; Ebner P; Adamek M; Ziemert N; Mayer C; Borisova M
    Front Microbiol; 2018; 9():2725. PubMed ID: 30524387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases.
    Müller M; Calvert M; Hottmann I; Kluj RM; Teufel T; Balbuchta K; Engelbrecht A; Selim KA; Xu Q; Borisova M; Titz A; Mayer C
    J Biol Chem; 2021; 296():100519. PubMed ID: 33684445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria's different ways to recycle their own cell wall.
    Mayer C; Kluj RM; Mühleck M; Walter A; Unsleber S; Hottmann I; Borisova M
    Int J Med Microbiol; 2019 Nov; 309(7):151326. PubMed ID: 31296364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NamZ1 and NamZ2 from the Oral Pathogen Tannerella forsythia Are Peptidoglycan Processing Exo-β-
    Borisova M; Balbuchta K; Lovering A; Titz A; Mayer C
    J Bacteriol; 2022 Mar; 204(3):e0059721. PubMed ID: 35129368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG.
    Mayer VMT; Tomek MB; Figl R; Borisova M; Hottmann I; Blaukopf M; Altmann F; Mayer C; Schäffer C
    BMC Microbiol; 2020 Nov; 20(1):352. PubMed ID: 33203363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia.
    Ruscitto A; Hottmann I; Stafford GP; Schäffer C; Mayer C; Sharma A
    J Bacteriol; 2016 Nov; 198(22):3119-3125. PubMed ID: 27601356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Borisova M; Gisin J; Mayer C
    mBio; 2017 Mar; 8(2):. PubMed ID: 28351914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis.
    Psylinakis E; Boneca IG; Mavromatis K; Deli A; Hayhurst E; Foster SJ; Vårum KM; Bouriotis V
    J Biol Chem; 2005 Sep; 280(35):30856-63. PubMed ID: 15961396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase".
    Jaeger T; Arsic M; Mayer C
    J Biol Chem; 2005 Aug; 280(34):30100-6. PubMed ID: 15983044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction.
    Jacobs C; Huang LJ; Bartowsky E; Normark S; Park JT
    EMBO J; 1994 Oct; 13(19):4684-94. PubMed ID: 7925310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli.
    Jaeger T; Mayer C
    J Bacteriol; 2008 Oct; 190(20):6598-608. PubMed ID: 18723630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hijacking the Peptidoglycan Recycling Pathway of Escherichia coli to Produce Muropeptides.
    Rousseau A; Michaud J; Pradeau S; Armand S; Cottaz S; Richard E; Fort S
    Chemistry; 2023 Jan; 29(6):e202202991. PubMed ID: 36256497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan.
    Bernard E; Rolain T; Courtin P; Guillot A; Langella P; Hols P; Chapot-Chartier MP
    J Biol Chem; 2011 Jul; 286(27):23950-8. PubMed ID: 21586574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins.
    Goodwin OY; Thomasson MS; Lin AJ; Sweeney MM; Macnaughtan MA
    J Biotechnol; 2013 Dec; 168(4):315-23. PubMed ID: 24140293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides.
    Shah IM; Dworkin J
    Mol Microbiol; 2010 Mar; 75(5):1232-43. PubMed ID: 20070526
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Hottmann I; Mayer VMT; Tomek MB; Friedrich V; Calvert MB; Titz A; Schäffer C; Mayer C
    Front Microbiol; 2018; 9():19. PubMed ID: 29434575
    [No Abstract]   [Full Text] [Related]  

  • 19. Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores.
    Atrih A; Zöllner P; Allmaier G; Williamson MP; Foster SJ
    J Bacteriol; 1998 Sep; 180(17):4603-12. PubMed ID: 9721302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the beta-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling.
    Cheng Q; Li H; Merdek K; Park JT
    J Bacteriol; 2000 Sep; 182(17):4836-40. PubMed ID: 10940025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.