BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 20400581)

  • 1. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.
    Soleimani M; Hajabbasi MA; Afyuni M; Akbar S; Jensen JK; Holm PE; Borggaard OK
    J Environ Qual; 2010; 39(3):855-62. PubMed ID: 20400581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.
    Andrade MD; Prasher SO; Hendershot WH
    Environ Pollut; 2007 Jun; 147(3):781-90. PubMed ID: 17218042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
    Labanowski J; Monna F; Bermond A; Cambier P; Fernandez C; Lamy I; van Oort F
    Environ Pollut; 2008 Apr; 152(3):693-701. PubMed ID: 17692441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils.
    Egli M; Sartori G; Mirabella A; Giaccai D; Favilli F; Scherrer D; Krebs R; Delbos E
    Sci Total Environ; 2010 Jan; 408(4):931-46. PubMed ID: 19879634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution.
    Cesaro R; Esposito G
    J Environ Monit; 2009 Feb; 11(2):307-13. PubMed ID: 19212586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling EDTA solutions used to remediate metal-polluted soils.
    Zeng QR; Sauvé S; Allen HE; Hendershot WH
    Environ Pollut; 2005 Jan; 133(2):225-31. PubMed ID: 15519453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.