These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20400825)

  • 41. Room temperature purification of few-walled carbon nanotubes with high yield.
    Feng Y; Zhang H; Hou Y; McNicholas TP; Yuan D; Yang S; Ding L; Feng W; Liu J
    ACS Nano; 2008 Aug; 2(8):1634-8. PubMed ID: 19206366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.
    Zhang X; Li Q; Tu Y; Li Y; Coulter JY; Zheng L; Zhao Y; Jia Q; Peterson DE; Zhu Y
    Small; 2007 Feb; 3(2):244-8. PubMed ID: 17262764
    [No Abstract]   [Full Text] [Related]  

  • 44. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA Walkers as Transport Vehicles of Nanoparticles Along a Carbon Nanotube Track.
    Pan J; Cha TG; Chen H; Li F; Choi JH
    Methods Mol Biol; 2017; 1500():269-280. PubMed ID: 27813015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA-SWNT hybrid hydrogel.
    Cheng E; Li Y; Yang Z; Deng Z; Liu D
    Chem Commun (Camb); 2011 May; 47(19):5545-7. PubMed ID: 21468442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA origami: a history and current perspective.
    Nangreave J; Han D; Liu Y; Yan H
    Curr Opin Chem Biol; 2010 Oct; 14(5):608-15. PubMed ID: 20643573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermally induced local failures in quasi-one-dimensional systems: collapse in carbon nanotubes, necking in nanowires, and opening of bubbles in DNA.
    Nisoli C; Abraham D; Lookman T; Saxena A
    Phys Rev Lett; 2010 Jan; 104(2):025503. PubMed ID: 20366608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA-mediated self-assembly of single-walled carbon nanotubes into nanorings.
    Sonay AY; Culha M
    Small; 2013 Jun; 9(12):2059-63. PubMed ID: 23390056
    [No Abstract]   [Full Text] [Related]  

  • 51. Conductivity of a single DNA duplex bridging a carbon nanotube gap.
    Guo X; Gorodetsky AA; Hone J; Barton JK; Nuckolls C
    Nat Nanotechnol; 2008 Mar; 3(3):163-7. PubMed ID: 18654489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Force fluctuation on pulling a ssDNA from a carbon nanotube.
    Li Z; Yang W
    Biomech Model Mechanobiol; 2011 Apr; 10(2):221-7. PubMed ID: 20526730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays.
    Liu P; Liu L; Jiang K; Fan S
    Small; 2011 Mar; 7(6):732-6. PubMed ID: 21425457
    [No Abstract]   [Full Text] [Related]  

  • 54. Bundling up carbon nanotubes through Wigner defects.
    da Silva AJ; Fazzio A; Antonelli A
    Nano Lett; 2005 Jun; 5(6):1045-9. PubMed ID: 15943440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel bifunctional protein supramolecule for construction of carbon nanotube-titanium hybrid material.
    Inoue I; Zheng B; Watanabe K; Ishikawa Y; Shiba K; Yasueda H; Uraoka Y; Yamashita I
    Chem Commun (Camb); 2011 Dec; 47(47):12649-51. PubMed ID: 22046589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale structure and microscale stiffness of DNA nanotubes.
    Schiffels D; Liedl T; Fygenson DK
    ACS Nano; 2013 Aug; 7(8):6700-10. PubMed ID: 23879368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.
    Zheng H; Xiao M; Yan Q; Ma Y; Xiao SJ
    J Am Chem Soc; 2014 Jul; 136(29):10194-7. PubMed ID: 25000226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlling Dynamic DNA Reactions at the Surface of Single-Walled Carbon Nanotube Electrodes to Design Hybridization Platforms with a Specific Amperometric Readout.
    Fortunati S; Vasini I; Giannetto M; Mattarozzi M; Porchetta A; Bertucci A; Careri M
    Anal Chem; 2022 Mar; 94(12):5075-5083. PubMed ID: 35303407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical mechanics of DNA-nanotube adsorption.
    Tonoyan S; Khechoyan D; Mamasakhlisov Y; Badasyan A
    Phys Rev E; 2020 Jun; 101(6-1):062422. PubMed ID: 32688493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen-bonded nanotubes as a model for DNA transcription.
    Sajfert V; Dajić R; Tosić B
    J Nanosci Nanotechnol; 2004 Sep; 4(7):886-90. PubMed ID: 15570977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.