These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 20400947)
21. Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria. Kattke MD; Gosschalk JE; Martinez OE; Kumar G; Gale RT; Cascio D; Sawaya MR; Philips M; Brown ED; Clubb RT PLoS Pathog; 2019 Apr; 15(4):e1007723. PubMed ID: 31002736 [TBL] [Abstract][Full Text] [Related]
22. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23. Cheah SC; Hussey H; Baddiley J Eur J Biochem; 1981 Sep; 118(3):497-500. PubMed ID: 6271552 [TBL] [Abstract][Full Text] [Related]
23. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Soldo B; Lazarevic V; Karamata D Microbiology (Reading); 2002 Jul; 148(Pt 7):2079-2087. PubMed ID: 12101296 [TBL] [Abstract][Full Text] [Related]
24. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid. Koç C; Gerlach D; Beck S; Peschel A; Xia G; Stehle T J Biol Chem; 2015 Apr; 290(15):9874-85. PubMed ID: 25697358 [TBL] [Abstract][Full Text] [Related]
26. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. D'Elia MA; Pereira MP; Chung YS; Zhao W; Chau A; Kenney TJ; Sulavik MC; Black TA; Brown ED J Bacteriol; 2006 Jun; 188(12):4183-9. PubMed ID: 16740924 [TBL] [Abstract][Full Text] [Related]
27. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. Pereira MP; D'Elia MA; Troczynska J; Brown ED J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787 [TBL] [Abstract][Full Text] [Related]
28. Insight into the molecular basis of substrate recognition by the wall teichoic acid glycosyltransferase TagA. Martinez OE; Mahoney BJ; Goring AK; Yi SW; Tran DP; Cascio D; Phillips ML; Muthana MM; Chen X; Jung ME; Loo JA; Clubb RT J Biol Chem; 2022 Feb; 298(2):101464. PubMed ID: 34864059 [TBL] [Abstract][Full Text] [Related]
29. The Amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties. Bhavsar AP; D'Elia MA; Sahakian TD; Brown ED J Bacteriol; 2007 Oct; 189(19):6816-23. PubMed ID: 17660278 [TBL] [Abstract][Full Text] [Related]
30. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23. Cheah SC; Hussey H; Hancock I; Baddiley J J Gen Microbiol; 1982 Mar; 128(3):593-9. PubMed ID: 6281365 [TBL] [Abstract][Full Text] [Related]
31. Occurrence and function of membrane teichoic acids. Lambert PA; Hancock IC; Baddiley J Biochim Biophys Acta; 1977 May; 472(1):1-12. PubMed ID: 406922 [TBL] [Abstract][Full Text] [Related]
32. Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. Sobhanifar S; Worrall LJ; Gruninger RJ; Wasney GA; Blaukopf M; Baumann L; Lameignere E; Solomonson M; Brown ED; Withers SG; Strynadka NC Proc Natl Acad Sci U S A; 2015 Feb; 112(6):E576-85. PubMed ID: 25624472 [TBL] [Abstract][Full Text] [Related]
33. Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. Fischer W; Koch HU; Rösel P; Fiedler F J Biol Chem; 1980 May; 255(10):4557-62. PubMed ID: 7372593 [No Abstract] [Full Text] [Related]
34. The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids. Rahman MM; Hunter HN; Prova S; Verma V; Qamar A; Golemi-Kotra D mBio; 2016 Feb; 7(1):e02070-15. PubMed ID: 26861022 [TBL] [Abstract][Full Text] [Related]
35. Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Sadovskaya I; Vinogradov E; Li J; Jabbouri S Carbohydr Res; 2004 Jun; 339(8):1467-73. PubMed ID: 15178389 [TBL] [Abstract][Full Text] [Related]
36. Crystal structures of Staphylococcus epidermidis mevalonate diphosphate decarboxylase bound to inhibitory analogs reveal new insight into substrate binding and catalysis. Barta ML; Skaff DA; McWhorter WJ; Herdendorf TJ; Miziorko HM; Geisbrecht BV J Biol Chem; 2011 Jul; 286(27):23900-10. PubMed ID: 21561869 [TBL] [Abstract][Full Text] [Related]
37. Structure and biosynthesis of teichoic acids in the cell walls of Staphylococcus xylosus DSM 20266. Fiedler F; Steber J Arch Microbiol; 1984 Aug; 138(4):321-8. PubMed ID: 6477033 [TBL] [Abstract][Full Text] [Related]
38. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. Badurina DS; Zolli-Juran M; Brown ED Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027 [TBL] [Abstract][Full Text] [Related]
39. Chemical composition and structure of cell wall teichoic acids of staphylococci. Endl J; Seidl HP; Fiedler F; Schleifer KH Arch Microbiol; 1983 Sep; 135(3):215-23. PubMed ID: 6639273 [TBL] [Abstract][Full Text] [Related]
40. Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family. Anderson MS; Eveland SS; Price NP FEMS Microbiol Lett; 2000 Oct; 191(2):169-75. PubMed ID: 11024259 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]