These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 20400953)

  • 1. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
    Kim DH; Viventi J; Amsden JJ; Xiao J; Vigeland L; Kim YS; Blanco JA; Panilaitis B; Frechette ES; Contreras D; Kaplan DL; Omenetto FG; Huang Y; Hwang KC; Zakin MR; Litt B; Rogers JA
    Nat Mater; 2010 Jun; 9(6):511-7. PubMed ID: 20400953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk Fibroin for Flexible Electronic Devices.
    Zhu B; Wang H; Leow WR; Cai Y; Loh XJ; Han MY; Chen X
    Adv Mater; 2016 Jun; 28(22):4250-65. PubMed ID: 26684370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing.
    Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X
    Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradable Elastomeric Silk Biomaterial for Flexible Bioelectronics.
    Brooks AK; Pradhan S; Yadavalli VK
    ACS Appl Bio Mater; 2023 Oct; 6(10):4392-4402. PubMed ID: 37788457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The challenge of implant integration in partial meniscal replacement: an experimental study on a silk fibroin scaffold in sheep.
    Stein SEC; von Luebken F; Warnecke D; Gentilini C; Skaer N; Walker R; Kessler O; Ignatius A; Duerselen L
    Knee Surg Sports Traumatol Arthrosc; 2019 Feb; 27(2):369-380. PubMed ID: 30264241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.
    Viventi J; Kim DH; Moss JD; Kim YS; Blanco JA; Annetta N; Hicks A; Xiao J; Huang Y; Callans DJ; Rogers JA; Litt B
    Sci Transl Med; 2010 Mar; 2(24):24ra22. PubMed ID: 20375008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review).
    Koh LD; Yeo J; Lee YY; Ong Q; Han M; Tee BC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():151-172. PubMed ID: 29525090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.
    Brenckle MA; Cheng H; Hwang S; Tao H; Paquette M; Kaplan DL; Rogers JA; Huang Y; Omenetto FG
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19870-5. PubMed ID: 26305434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Flexible Electronics: Natural Materials, Fabrication, and Applications.
    Hui Z; Zhang L; Ren G; Sun G; Yu HD; Huang W
    Adv Mater; 2023 Jul; 35(28):e2211202. PubMed ID: 36763956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials.
    Shi C; Hu F; Wu R; Xu Z; Shao G; Yu R; Liu XY
    Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Silk Fibroin Bio-Transient Solution Processable Memristor.
    Yong J; Hassan B; Liang Y; Ganesan K; Rajasekharan R; Evans R; Egan G; Kavehei O; Li J; Chana G; Nasr B; Skafidas E
    Sci Rep; 2017 Nov; 7(1):14731. PubMed ID: 29116250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of robust, ultra-smooth, flexible and transparent regenerated silk composite films for bio-integrated electronic device applications.
    Gunapu DVSK; Prasad YB; Mudigunda VS; Yasam P; Rengan AK; Korla R; Vanjari SRK
    Int J Biol Macromol; 2021 Apr; 176():498-509. PubMed ID: 33571588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin.
    Liu Y; Qi N; Song T; Jia M; Xia Z; Yuan Z; Yuan W; Zhang KQ; Sun B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20670-5. PubMed ID: 25405590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.
    Wang H; Zhu B; Wang H; Ma X; Hao Y; Chen X
    Small; 2016 Jul; 12(25):3360-5. PubMed ID: 27315137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin film from non-mulberry tropical tasar silkworms: A novel substrate for in vitro fibroblast culture.
    Acharya C; Ghosh SK; Kundu SC
    Acta Biomater; 2009 Jan; 5(1):429-37. PubMed ID: 18676188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in silk fibroin-based flexible electronics.
    Wen DL; Sun DH; Huang P; Huang W; Su M; Wang Y; Han MD; Kim B; Brugger J; Zhang HX; Zhang XS
    Microsyst Nanoeng; 2021; 7():35. PubMed ID: 34567749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.