These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20401402)

  • 1. Continuous flow processing from microreactors to mesoscale: the Bohlmann-Rahtz cyclodehydration reaction.
    Bagley MC; Fusillo V; Jenkins RL; Lubinu MC; Mason C
    Org Biomol Chem; 2010 May; 8(9):2245-51. PubMed ID: 20401402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor.
    Bagley MC; Fusillo V; Jenkins RL; Lubinu MC; Mason C
    Beilstein J Org Chem; 2013; 9():1957-68. PubMed ID: 24204407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bohlmann-Rahtz cyclodehydration of aminodienones to pyridines using N-iodosuccinimide.
    Bagley MC; Glover C
    Molecules; 2010 Apr; 15(5):3211-27. PubMed ID: 20657473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microreactors for continuous processing – How close to commercial utility?
    Fortunak J; Confalone PN; Grosso JA
    Curr Opin Drug Discov Devel; 2010; 13(6):642-4. PubMed ID: 21105486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile solution phase combinatorial synthesis of tetrasubstituted pyridines using the Bohlmann-Rahtz heteroannulation reaction.
    Bagley MC; Dale JW; Ohnesorge M; Xiong X; Bower J
    J Comb Chem; 2003; 5(1):41-4. PubMed ID: 12523833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of microwave-assisted organic synthesis on the multigram scale.
    Wolkenberg SE; Shipe WD; Lindsley CW; Guare JP; Pawluczyk JM
    Curr Opin Drug Discov Devel; 2005 Nov; 8(6):701-8. PubMed ID: 16312146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of stop-flow microwave technology to scaling-out SNAr reactions using a soluble organic base.
    Marafie JA; Moseley JD
    Org Biomol Chem; 2010 May; 8(9):2219-27. PubMed ID: 20401399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical flow reactor for continuous organic photochemistry.
    Hook BD; Dohle W; Hirst PR; Pickworth M; Berry MB; Booker-Milburn KI
    J Org Chem; 2005 Sep; 70(19):7558-64. PubMed ID: 16149784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.
    Glasnov TN; Kappe CO
    Chemistry; 2011 Oct; 17(43):11956-68. PubMed ID: 21932289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid phase oxidation chemistry in continuous-flow microreactors.
    Gemoets HP; Su Y; Shang M; Hessel V; Luque R; Noël T
    Chem Soc Rev; 2016 Jan; 45(1):83-117. PubMed ID: 26203551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot multistep Bohlmann-Rahtz heteroannulation reactions: synthesis of dimethyl sulfomycinamate.
    Bagley MC; Chapaneri K; Dale JW; Xiong X; Bower J
    J Org Chem; 2005 Feb; 70(4):1389-99. PubMed ID: 15704975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of thermophilic enzymes in miniaturized flow reactors.
    Hickey AM; Marle L; McCreedy T; Watts P; Greenway GM; Littlechild JA
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1621-3. PubMed ID: 18031278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of nitrification inhibition by metals in batch and continuous flow reactors.
    Hu Z; Chandran K; Grasso D; Smets BF
    Water Res; 2004 Nov; 38(18):3949-59. PubMed ID: 15380985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of utilizing bioindicators for testing microbial inactivation in sweetpotato purees processed with a continuous-flow microwave system.
    Brinley TA; Dock CN; Truong VD; Coronel P; Kumar P; Simunovic J; Sandeep KP; Cartwright GD; Swartzel KR; Jaykus LA
    J Food Sci; 2007 Jun; 72(5):E235-42. PubMed ID: 17995721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.
    Su Y; Straathof NJ; Hessel V; Noël T
    Chemistry; 2014 Aug; 20(34):10562-89. PubMed ID: 25056280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical reactions and on-line UV detection in microfabricated reactors.
    Lu H; Schmidt MA; Jensen KF
    Lab Chip; 2001 Sep; 1(1):22-8. PubMed ID: 15100885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of biohydrogen production by ammonia.
    Salerno MB; Park W; Zuo Y; Logan BE
    Water Res; 2006 Mar; 40(6):1167-72. PubMed ID: 16513155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Mesoscale Continuous-Flow Route toward Lithiated Methoxyallene.
    Seghers S; Heugebaert TSA; Moens M; Sonck J; Thybaut JW; Stevens CV
    ChemSusChem; 2018 Jul; 11(13):2248-2254. PubMed ID: 29750402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.