These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20401903)

  • 1. How noniridescent colors are generated by quasi-ordered structures of bird feathers.
    Noh H; Liew SF; Saranathan V; Mochrie SG; Prum RO; Dufresne ER; Cao H
    Adv Mater; 2010 Jul; 22(26-27):2871-80. PubMed ID: 20401903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double scattering of light from Biophotonic Nanostructures with short-range order.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Opt Express; 2010 May; 18(11):11942-8. PubMed ID: 20589056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051923. PubMed ID: 20866277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring spatially- and directionally-varying light scattering from biological material.
    Harvey TA; Bostwick KS; Marschner S
    J Vis Exp; 2013 May; (75):e50254. PubMed ID: 23712059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures.
    Prum RO; Torres RH
    Integr Comp Biol; 2003 Aug; 43(4):591-602. PubMed ID: 21680467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral reflectance and directional properties of structural coloration in bird plumage.
    Osorio D; Ham AD
    J Exp Biol; 2002 Jul; 205(Pt 14):2017-27. PubMed ID: 12089207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of red structural color in photonic glasses, bird feathers, and certain beetles.
    Magkiriadou S; Park JG; Kim YS; Manoharan VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062302. PubMed ID: 25615088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of single gyroid photonic crystals in bird feathers.
    Saranathan V; Narayanan S; Sandy A; Dufresne ER; Prum RO
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films.
    Stavenga DG; Tinbergen J; Leertouwer HL; Wilts BD
    J Exp Biol; 2011 Dec; 214(Pt 23):3960-7. PubMed ID: 22071186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.
    D'Alba L; Kieffer L; Shawkey MD
    J Exp Biol; 2012 Apr; 215(Pt 8):1272-7. PubMed ID: 22442364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers.
    D'Alba L; Saranathan V; Clarke JA; Vinther JA; Prum RO; Shawkey MD
    Biol Lett; 2011 Aug; 7(4):543-6. PubMed ID: 21307042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A closer look at the feather coloration in the male purple sunbird, Nectarinia asiatica.
    Mahapatra BB; Marathe SA; Meyer-Rochow VB; Mishra M
    Micron; 2016 Jun; 85():44-50. PubMed ID: 27088228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling.
    Wilts BD; Michielsen K; De Raedt H; Stavenga DG
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4363-8. PubMed ID: 24591592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of early growth conditions on colour-producing nanostructures revealed through small angle X-ray scattering and electron microscopy.
    Janas K; Łatkiewicz A; Parnell A; Lutyk D; Barczyk J; Shawkey MD; Gustafsson L; Cichoń M; Drobniak SM
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32764026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical approaches to study the optical response of the red-legged honeycreeper's plumage (Cyanerpes cyaneus).
    Urquia GM; Inchaussandague ME; Skigin DC; Lester M; Barreira A; Tubaro P
    Appl Opt; 2020 May; 59(13):3901-3909. PubMed ID: 32400659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.
    Shawkey MD; Maia R; D'Alba L
    J Morphol; 2011 Nov; 272(11):1399-407. PubMed ID: 21755527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of brilliant iridescent feather nanostructures.
    Nordén KK; Eliason CM; Stoddard MC
    Elife; 2021 Dec; 10():. PubMed ID: 34930526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record.
    Babarović F; Puttick MN; Zaher M; Learmonth E; Gallimore EJ; Smithwick FM; Mayr G; Vinther J
    J R Soc Interface; 2019 Jun; 16(155):20180921. PubMed ID: 31238836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring and modeling the inconspicuous iridescence of Formosan blue magpie's feather (Urocissacaerulea).
    Liao SF; Yao CY; Lee CC
    Appl Opt; 2015 Jun; 54(16):4979-83. PubMed ID: 26192654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.