These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2040249)

  • 41. Comparison of two in vitro methods of bone lead analysis and the implications for in vivo measurements.
    Somervaille LJ; Chettle DR; Scott MC; Aufderheide AC; Wallgren JE; Wittmers LE; Rapp GR
    Phys Med Biol; 1986 Nov; 31(11):1267-74. PubMed ID: 3786412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.
    Da Silva E; Kirkham B; Heyd DV; Pejović-Milić A
    Anal Chem; 2013 Oct; 85(19):9189-95. PubMed ID: 23980923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequential measurements of bone lead content by L X-ray fluorescence in CaNa2EDTA-treated lead-toxic children.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Environ Health Perspect; 1991 Jun; 93():271-7. PubMed ID: 1773798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Workshop on the X-ray fluorescence of lead in bone: conclusions, recommendations and summary.
    Todd AC; Landrigan PJ; Bloch P
    Neurotoxicology; 1993; 14(1):145-54. PubMed ID: 8361673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone lead concentrations assessed by in vivo X-ray fluorescence.
    Ambrose TM; Al-Lozi M; Scott MG
    Clin Chem; 2000 Aug; 46(8 Pt 1):1171-8. PubMed ID: 10926899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo study of an x-ray fluorescence system to detect bone strontium non-invasively.
    Zamburlini M; Pejović-Milić A; Chettle DR; Webber CE; Gyorffy J
    Phys Med Biol; 2007 Apr; 52(8):2107-22. PubMed ID: 17404458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo x-ray fluorescence measurements of cadmium and lead.
    Nilsson U; Skerfving S
    Scand J Work Environ Health; 1993; 19 Suppl 1():54-8. PubMed ID: 8159974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimisation of a polarised X-ray source for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Bennet C; el-Sharkawi AM; Hancock DA
    Appl Radiat Isot; 1998; 49(5-6):647-50. PubMed ID: 9569567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.
    Specht AJ; Weisskopf MG; Nie LH
    Physiol Meas; 2017 Mar; 38(3):575-585. PubMed ID: 28169835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. X-ray fluorescence: issues surrounding the application of a new tool for measuring burden of lead.
    Hu H; Milder FL; Burger DE
    Environ Res; 1989 Aug; 49(2):295-317. PubMed ID: 2753011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patella lead x-ray fluorescence measurements are independent of sample orientation.
    Todd AC; Godbold JH; Moshier EL; Khan FA
    Med Phys; 2001 Aug; 28(8):1806-10. PubMed ID: 11548953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo measurements of lead in bone using a 109Cd 'spot' source.
    Todd AC; McNeill FE
    Basic Life Sci; 1993; 60():299-302. PubMed ID: 8110132
    [No Abstract]   [Full Text] [Related]  

  • 54. Calibration of (109)Cd KXRF systems for in vivo bone lead measurements: weighted least-squares regression with different weighting functions.
    de Brito JA; Chettle DR
    Phys Med Biol; 2009 Jul; 54(13):L45-50. PubMed ID: 19521005
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coherent scattering and matrix correction in bone-lead measurements.
    Todd AC
    Phys Med Biol; 2000 Jul; 45(7):1953-63. PubMed ID: 10943931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calculating bone-lead measurement variance.
    Todd AC
    Environ Health Perspect; 2000 May; 108(5):383-6. PubMed ID: 10811562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An improved instrument for the in vivo detection of lead in bone.
    Gordon CL; Chettle DR; Webber CE
    Br J Ind Med; 1993 Jul; 50(7):637-41. PubMed ID: 8343425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and calibration of an in vivo bone lead measurement system, and its application to an industrially exposed population.
    Green S; Bradley DA; Roels HA; Mountford PJ; Morgan WD; Chettle DR; Konings JF; Palethorpe JE; Mearman DH; Lauwerys RR
    Basic Life Sci; 1993; 60():295-8. PubMed ID: 8110131
    [No Abstract]   [Full Text] [Related]  

  • 59. In vivo measurement of cortical bone lead using polarized x rays.
    Wielopolski L; Rosen JF; Slatkin DN; Zhang R; Kalef-Ezra JA; Rothman JC; Maryanski M; Jenks ST
    Med Phys; 1989; 16(4):521-8. PubMed ID: 2770625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The reproducibility of 109Cd-based X-ray fluorescence measurements of bone lead.
    Gordon CL; Webber CE; Chettle DR
    Environ Health Perspect; 1994 Aug; 102(8):690-4. PubMed ID: 7895710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.