BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20402498)

  • 1. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach.
    Palaskar DV; Boyer A; Cloutet E; Alfos C; Cramail H
    Biomacromolecules; 2010 May; 11(5):1202-11. PubMed ID: 20402498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.
    Hojabri L; Kong X; Narine SS
    Biomacromolecules; 2009 Apr; 10(4):884-91. PubMed ID: 19281152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols.
    Unverferth M; Kreye O; Prohammer A; Meier MA
    Macromol Rapid Commun; 2013 Oct; 34(19):1569-74. PubMed ID: 23996909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.
    Anantharaj S; Jayakannan M
    Biomacromolecules; 2012 Aug; 13(8):2446-55. PubMed ID: 22713137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid approach to biobased telechelics through two one-pot thiol-ene click reactions.
    Lluch C; Ronda JC; Galià M; Lligadas G; Cádiz V
    Biomacromolecules; 2010 Jun; 11(6):1646-53. PubMed ID: 20462176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea.
    Billault I; Mantle PG; Robins RJ
    J Am Chem Soc; 2004 Mar; 126(10):3250-6. PubMed ID: 15012155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis.
    Petrović ZS; Zhang W; Javni I
    Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes.
    Yanagishita Y; Kato M; Toshima K; Matsumura S
    ChemSusChem; 2008; 1(1-2):133-42. PubMed ID: 18605676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of poly-O-methyl-[n]-polyurethane from a d-glucamine-based monomer.
    Kolender AA; Arce SM; Varela O
    Carbohydr Res; 2011 Sep; 346(12):1398-405. PubMed ID: 21645884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tough blends of polylactide and castor oil.
    Robertson ML; Paxton JM; Hillmyer MA
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3402-10. PubMed ID: 21823623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cadiz V
    Biomacromolecules; 2007 Jun; 8(6):1858-64. PubMed ID: 17472338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.
    Lu Y; Larock RC
    Biomacromolecules; 2007 Oct; 8(10):3108-14. PubMed ID: 17877401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry.
    Peyrton J; Chambaretaud C; Avérous L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources.
    Hojabri L; Kong X; Narine SS
    Biomacromolecules; 2010 Apr; 11(4):911-8. PubMed ID: 20232886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrolactones and polyesters from ricinoleic acid.
    Slivniak R; Domb AJ
    Biomacromolecules; 2005; 6(3):1679-88. PubMed ID: 15877394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A design-of-experiments approach for the optimization and understanding of the cross-metathesis reaction of methyl ricinoleate with methyl acrylate.
    Ho TT; Jacobs T; Meier MA
    ChemSusChem; 2009; 2(8):749-54. PubMed ID: 19569170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Renewable Non-Isocyanate Polyurethanes via the Lossen Rearrangement.
    Filippi L; Meier MAR
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000440. PubMed ID: 32935889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cholesterol and other additives on viscosity, self-diffusion coefficient, and intramolecular movements of oleic acid.
    Iwahashi M; Umehara A; Wakisaka K; Kasahara Y; Minami H; Matsuzawa H; Shinzawa H; Ozaki Y; Suzuki M
    J Phys Chem B; 2007 Feb; 111(4):740-7. PubMed ID: 17249817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and structure elucidation of 12-hydroxyoctadec-cis-9-enoic acid in Jatropha gossypifolia and Hevea brasiliensis seed oils: a rich source of hydroxy fatty acid.
    Hosamani KM; Katagi KS
    Chem Phys Lipids; 2008 Mar; 152(1):9-12. PubMed ID: 18060875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.