BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20402584)

  • 1. Understanding the application of Raman spectroscopy to the detection of traces of life.
    Marshall CP; Edwards HG; Jehlicka J
    Astrobiology; 2010 Mar; 10(2):229-43. PubMed ID: 20402584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.
    Pasteris JD; Wopenka B
    Astrobiology; 2003; 3(4):727-38. PubMed ID: 14987478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars.
    Osterhout JT; Schopf JW; Kudryavtsev AB; Czaja AD; Williford KH
    Astrobiology; 2022 Oct; 22(10):1239-1254. PubMed ID: 36194869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-based Raman spectroscopic analyses of an Ordovician stromatolite.
    Olcott Marshall A; Marshall CP
    Astrobiology; 2013 Sep; 13(9):814-20. PubMed ID: 24015783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.
    Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G
    Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens.
    Delarue F; Rouzaud JN; Derenne S; Bourbin M; Westall F; Kremer B; Sugitani K; Deldicque D; Robert F
    Astrobiology; 2016 Jun; 16(6):407-17. PubMed ID: 27186810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of Vanadium in Microfossils: A New Potential Biosignature.
    Marshall CP; Olcott Marshall A; Aitken JB; Lai B; Vogt S; Breuer P; Steemans P; Lay PA
    Astrobiology; 2017 Nov; 17(11):1069-1076. PubMed ID: 28910135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy in astrobiology.
    Jorge Villar SE; Edwards HG
    Anal Bioanal Chem; 2006 Jan; 384(1):100-13. PubMed ID: 16456933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hematite and carbonaceous materials in geological samples: a cautionary tale.
    Marshall CP; Marshall AO
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):133-7. PubMed ID: 21511518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars.
    Clodoré L; Foucher F; Hickman-Lewis K; Sorieul S; Jouve J; Réfrégiers M; Collet G; Petoud S; Gratuze B; Westall F
    Astrobiology; 2024 Feb; 24(2):190-226. PubMed ID: 38393828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 ma old Draken Formation.
    Foucher F; Westall F
    Astrobiology; 2013 Jan; 13(1):57-67. PubMed ID: 23276206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.
    Shkolyar S; Eshelman EJ; Farmer JD; Hamilton D; Daly MG; Youngbull C
    Astrobiology; 2018 Apr; 18(4):431-453. PubMed ID: 29624103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of Portable Spectrometers for Planetary Exploration: A Comparison of 532 nm and 785 nm Raman Spectroscopy of Reduced Carbon in Archean Cherts.
    Harris LV; Hutchinson IB; Ingley R; Marshall CP; Marshall AO; Edwards HG
    Astrobiology; 2015 Jun; 15(6):420-9. PubMed ID: 26060980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials.
    Lindsay JF; McKay DS; Allen CC
    Astrobiology; 2003; 3(4):739-58. PubMed ID: 14987479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy as a screening tool for ancient life detection on Mars.
    Marshall CP; Marshall AO
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2030):. PubMed ID: 25368343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.
    Walsh MM
    Astrobiology; 2004; 4(4):429-37. PubMed ID: 15684724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.
    Wade ML; Agresti DG; Wdowiak TJ; Armendarez LP; Farmer JD
    J Geophys Res; 1999 Apr; 104(E4):8489-507. PubMed ID: 11542933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally altered Silurian cyanobacterial mats: a key to Earth's oldest fossils.
    Kazmierczak J; Kremer B
    Astrobiology; 2009 Oct; 9(8):731-43. PubMed ID: 19845445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.