These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20402585)

  • 41. A detailed study of the amino acids produced from the vacuum UV irradiation of interstellar ice analogs.
    Nuevo M; Auger G; Blanot D; d'Hendecourt L
    Orig Life Evol Biosph; 2008 Feb; 38(1):37-56. PubMed ID: 18175206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecules on a space odyssey.
    Ehrenfreund P
    Science; 1999 Feb; 283(5405):1123-4. PubMed ID: 10075570
    [No Abstract]   [Full Text] [Related]  

  • 43. The Cometary and Interstellar Dust Analyzer at comet 81P/Wild 2.
    Kissel J; Krueger FR; Silén J; Clark BC
    Science; 2004 Jun; 304(5678):1774-6. PubMed ID: 15205526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A plausibly prebiotic synthesis of phosphonic acids.
    de Graaf RM; Visscher J; Schwartz AW
    Nature; 1995 Nov; 378(6556):474-7. PubMed ID: 7477402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical evolution and the origin of life.
    Oro J
    Adv Space Res; 1983; 3(9):77-94. PubMed ID: 11542466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of glycine-containing complexes in impacts of comets on early Earth.
    Goldman N; Reed EJ; Fried LE; William Kuo IF; Maiti A
    Nat Chem; 2010 Nov; 2(11):949-54. PubMed ID: 20966951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulated cometary matter as a test for enantiomer separating chromatography for use on comet 46P/Wirtanen.
    Meierhenrich UJ; Thiemann WH; Munoz Caro GM; Schutte WA; Greenberg JM
    Adv Space Res; 2001; 27(2):329-34. PubMed ID: 11642294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prebiotic chemistry: chemical evolution of organics on the primitive Earth under simulated prebiotic conditions.
    Dondi D; Merli D; Pretali L; Fagnoni M; Albini A; Serpone N
    Photochem Photobiol Sci; 2007 Nov; 6(11):1210-7. PubMed ID: 17973054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The contribution of cometary volatiles to the primitive Earth.
    Oro J; Holzer G; Lazcano-Araujo A
    Life Sci Space Res; 1980; 18():67-82. PubMed ID: 11968212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons.
    Nuevo M; Chen YJ; Hu WJ; Qiu JM; Wu SR; Fung HS; Chu CC; Yih TS; Ip WH; Wu CY
    Astrobiology; 2014 Feb; 14(2):119-31. PubMed ID: 24512484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organic matter in meteorites.
    Llorca J
    Int Microbiol; 2004 Dec; 7(4):239-48. PubMed ID: 15666244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Very low temperature formaldehyde reactions and the build-up of organic molecules in comets and interstellar ices.
    Schutte WA; Allamandola LJ; Sandford SA
    Adv Space Res; 1995 Mar; 15(3):401-6. PubMed ID: 11539253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abiotic formation of bioorganic compounds in space--preliminary experiments on ground and future exobiology experiments in space.
    Kobayashi K; Kaneko T; Hashimoto H; Kouchi A; Saito T; Yamashita M
    Biol Sci Space; 1998 Jun; 12(2):102-5. PubMed ID: 11541874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.
    Pasek MA; Lauretta DS
    Astrobiology; 2005 Aug; 5(4):515-35. PubMed ID: 16078869
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing the structure of cometary ice.
    Wilson MA; Pohorille A; Jenniskens P; Blake DF
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):3-19. PubMed ID: 11536679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radiogenic heating of comets by 26Al and implications for their time of formation.
    Prialnik D; Bar-Nun A; Podolak M
    Astrophys J; 1987 Aug; 319(2):993-1002. PubMed ID: 11539739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organic synthesis via irradiation and warming of ice grains in the solar nebula.
    Ciesla FJ; Sandford SA
    Science; 2012 Apr; 336(6080):452-4. PubMed ID: 22461502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interstellar ices as a source of CN-bearing molecules in protoplanetary disks.
    Whittet DC; Gibb EL; Nummelin A
    Orig Life Evol Biosph; 2001; 31(1-2):157-65. PubMed ID: 11296519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of ultraviolet light on the degradation of organic compounds: a possible explanation for the absence of organic matter on Mars.
    Oro J; Holzer G
    Life Sci Space Res; 1979; 17():77-86. PubMed ID: 12001969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.