These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20403421)

  • 81. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species.
    Gersey ZC; Rodriguez GA; Barbarite E; Sanchez A; Walters WM; Ohaeto KC; Komotar RJ; Graham RM
    BMC Cancer; 2017 Feb; 17(1):99. PubMed ID: 28160777
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression.
    Xin M; Yang Y; Zhang D; Wang J; Chen S; Zhou D
    Osteoporos Int; 2015 Nov; 26(11):2665-76. PubMed ID: 25963235
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced protein oxidative damage: anti-oxidant or pro-oxidant?
    Lu N; Chen W; Peng YY
    Eur J Pharmacol; 2011 Jun; 659(2-3):95-101. PubMed ID: 21419762
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation.
    Liu W; Xu Z; Li H; Guo M; Yang T; Feng S; Xu B; Deng Y
    Hum Exp Toxicol; 2017 Sep; 36(9):949-966. PubMed ID: 27837179
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Carnosine Treatment Diminished Oxidative Stress and Glycation Products in Serum and Tissues of D-Galactose-Treated Rats.
    Aydin F; Kalaz EB; Kucukgergin C; Coban J; Dogru-Abbasoglu S; Uysal M
    Curr Aging Sci; 2018; 11(1):10-15. PubMed ID: 28676006
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Protective Efficacy of the Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), from India in Neuronal Hippocampal Cells against Hypoxia.
    Pal M; Bhardwaj A; Manickam M; Tulsawani R; Srivastava M; Sugadev R; Misra K
    Int J Med Mushrooms; 2015; 17(9):829-40. PubMed ID: 26756295
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Protein carbonylation.
    Suzuki YJ; Carini M; Butterfield DA
    Antioxid Redox Signal; 2010 Mar; 12(3):323-5. PubMed ID: 19743917
    [No Abstract]   [Full Text] [Related]  

  • 89. Attenuation of liver insoluble protein carbonyls: indicator of a longevity determinant?
    Bhattacharya A; Leonard S; Tardif S; Buffenstein R; Fischer KE; Richardson A; Austad SN; Chaudhuri AR
    Aging Cell; 2011 Aug; 10(4):720-3. PubMed ID: 21463461
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Aging and its treatment with vitamin C: a comprehensive mechanistic review.
    Mumtaz S; Ali S; Tahir HM; Kazmi SAR; Shakir HA; Mughal TA; Mumtaz S; Summer M; Farooq MA
    Mol Biol Rep; 2021 Dec; 48(12):8141-8153. PubMed ID: 34655018
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Applicability of FTIR-ATR Method to Measure Carbonyls in Blood Plasma after Physical and Mental Stress.
    Bujok J; Gąsior-Głogowska M; Marszałek M; Trochanowska-Pauk N; Zigo F; Pavľak A; Komorowska M; Walski T
    Biomed Res Int; 2019; 2019():2181370. PubMed ID: 31032337
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
    Borra SK; Mahendra J; Gurumurthy P; Jayamathi ; Iqbal SS; Mahendra L
    J Clin Diagn Res; 2014 Oct; 8(10):CC01-5. PubMed ID: 25478334
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Age-related oxidative stress compromises endosomal proteostasis.
    Cannizzo ES; Clement CC; Morozova K; Valdor R; Kaushik S; Almeida LN; Follo C; Sahu R; Cuervo AM; Macian F; Santambrogio L
    Cell Rep; 2012 Jul; 2(1):136-49. PubMed ID: 22840404
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation.
    Tanase M; Urbanska AM; Zolla V; Clement CC; Huang L; Morozova K; Follo C; Goldberg M; Roda B; Reschiglian P; Santambrogio L
    Sci Rep; 2016 Jan; 6():19311. PubMed ID: 26776680
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Oxidative damage of lysozyme and human serum albumin and their mixtures: a comparison of photosensitized and peroxyl radical promoted processes.
    Arenas A; Vasquez R; López-Alarcón C; Lissi E; Silva E
    Protein J; 2011 Jun; 30(5):359-65. PubMed ID: 21728041
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Identification of carbonylated proteins from monocytic cells under diabetes-induced stress conditions.
    Nair D; Nedungadi D; Mishra N; Nair BG; Nair SS
    Biomed Chromatogr; 2021 Jun; 35(6):e5065. PubMed ID: 33450076
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Protein carbonylation and metabolic control systems.
    Curtis JM; Hahn WS; Long EK; Burrill JS; Arriaga EA; Bernlohr DA
    Trends Endocrinol Metab; 2012 Aug; 23(8):399-406. PubMed ID: 22742812
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Phenotypic and genetic consequences of protein damage.
    Krisko A; Radman M
    PLoS Genet; 2013; 9(9):e1003810. PubMed ID: 24068972
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.
    Okusaga OO
    Aging Dis; 2014 Aug; 5(4):256-62. PubMed ID: 25110609
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Non-enzymatic molecular damage as a prototypic driver of aging.
    Golubev A; Hanson AD; Gladyshev VN
    J Biol Chem; 2017 Apr; 292(15):6029-6038. PubMed ID: 28264930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.