These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 20403749)

  • 1. Variations in the sequences of BMP2 imply different mechanisms for the evolution of morphological diversity in vertebrates.
    Wang Z; Yuan L; Zuo X; Racey PA; Zhang S
    Comp Biochem Physiol Part D Genomics Proteomics; 2009 Jun; 4(2):100-4. PubMed ID: 20403749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution and phylogenetic utility of the polyubiquitin locus in mammals and higher vertebrates.
    Vrana PB; Wheeler WC
    Mol Phylogenet Evol; 1996 Oct; 6(2):259-69. PubMed ID: 8899727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
    Okumura M; Matthews RJ; Robb B; Litman GW; Bork P; Thomas ML
    J Immunol; 1996 Aug; 157(4):1569-75. PubMed ID: 8759740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence variation and molecular evolution of BMP4 genes.
    Zhang DJ; Wu JH; Husile G; Sun HL; Zhang WG
    Genet Mol Res; 2014 Nov; 13(4):9196-201. PubMed ID: 25501141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the avian growth hormone gene and comparison with its mammalian counterpart.
    Buggiotti L; Primmer CR
    J Evol Biol; 2006 May; 19(3):844-54. PubMed ID: 16674581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of mammalian incretin hormone genes.
    Irwin DM
    Regul Pept; 2009 Jun; 155(1-3):121-30. PubMed ID: 19374921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the regulatory control of vertebrate striated muscle: the roles of troponin I and myosin binding protein-C.
    Shaffer JF; Gillis TE
    Physiol Genomics; 2010 Aug; 42(3):406-19. PubMed ID: 20484158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference for the initial stage of domain shuffling: tracing the evolutionary fate of the PIPSL retrogene in hominoids.
    Ohshima K; Igarashi K
    Mol Biol Evol; 2010 Nov; 27(11):2522-33. PubMed ID: 20525901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of the kininogen gene from Lampetra japonica provides insights into its phylogeny in vertebrates.
    Zhou L; Liu X; Jin P; Li Q
    J Genet Genomics; 2009 Feb; 36(2):109-15. PubMed ID: 19232309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and evolutionary analysis of GJB6 in mammals.
    Ru B; Han N; He G; Brayer K; Zhang S; Wang Z
    Biochem Genet; 2012 Apr; 50(3-4):213-26. PubMed ID: 21948254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals.
    Margarit E; Guillén A; Rebordosa C; Vidal-Taboada J; Sánchez M; Ballesta F; Oliva R
    Biochem Biophys Res Commun; 1998 Apr; 245(2):370-7. PubMed ID: 9571157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates.
    Chang CL; Roh J; Hsu SY
    Peptides; 2004 Oct; 25(10):1633-42. PubMed ID: 15476930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals.
    Macqueen DJ; Delbridge ML; Manthri S; Johnston IA
    Mol Biol Evol; 2010 Aug; 27(8):1886-902. PubMed ID: 20223856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of ankyrin: gain of function in vertebrates by acquisition of an obscurin/titin-binding-related domain.
    Hopitzan AA; Baines AJ; Kordeli E
    Mol Biol Evol; 2006 Jan; 23(1):46-55. PubMed ID: 16135777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene.
    Duret L; Chureau C; Samain S; Weissenbach J; Avner P
    Science; 2006 Jun; 312(5780):1653-5. PubMed ID: 16778056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analysis of vertebrate kininogen genes.
    Zhou L; Li-Ling J; Huang H; Ma F; Li Q
    Genomics; 2008 Feb; 91(2):129-41. PubMed ID: 18096361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.
    Eckhart L; Ballaun C; Hermann M; VandeBerg JL; Sipos W; Uthman A; Fischer H; Tschachler E
    Mol Biol Evol; 2008 May; 25(5):831-41. PubMed ID: 18281271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon 3 of the growth hormone receptor (GH-R) is specific to eutherian mammals.
    Menzies BR; Shaw G; Fletcher TP; Pask AJ; Renfree MB
    Mol Cell Endocrinol; 2008 Dec; 296(1-2):64-8. PubMed ID: 18706474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary conservation of the core components necessary for the extrinsic apoptotic signaling pathway, in Medaka fish.
    Sakamaki K; Nozaki M; Kominami K; Satou Y
    BMC Genomics; 2007 Jun; 8():141. PubMed ID: 17540041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of the Hlx homeobox gene and protein: conservation of structure and expression from fish to mammals.
    Bates MD; Wells JM; Venkatesh B
    Gene; 2005 Jun; 352():45-56. PubMed ID: 15935575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.