These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 20405104)
1. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Radulescu C; Stihi C; Busuioc G; Gheboianu AI; Popescu IV Bull Environ Contam Toxicol; 2010 May; 84(5):641-6. PubMed ID: 20405104 [TBL] [Abstract][Full Text] [Related]
2. Analysis of several heavy metals in wild edible mushrooms from regions of China. Chen XH; Zhou HB; Qiu GZ Bull Environ Contam Toxicol; 2009 Aug; 83(2):280-5. PubMed ID: 19452115 [TBL] [Abstract][Full Text] [Related]
3. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Árvay J; Tomáš J; Hauptvogl M; Kopernická M; Kováčik A; Bajčan D; Massányi P J Environ Sci Health B; 2014; 49(11):815-27. PubMed ID: 25190556 [TBL] [Abstract][Full Text] [Related]
4. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Komárek M; Chrastný V; Stíchová J Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793 [TBL] [Abstract][Full Text] [Related]
5. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Melgar MJ; Alonso J; García MA Sci Total Environ; 2009 Oct; 407(20):5328-34. PubMed ID: 19631362 [TBL] [Abstract][Full Text] [Related]
6. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Rudawska M; Leski T Sci Total Environ; 2005 Mar; 339(1-3):103-15. PubMed ID: 15740762 [TBL] [Abstract][Full Text] [Related]
7. Metal concentrations of wild edible mushrooms from Turkey. Sarikurkcu C; Tepe B; Solak MH; Cetinkaya S Ecol Food Nutr; 2012; 51(4):346-63. PubMed ID: 22794131 [TBL] [Abstract][Full Text] [Related]
8. Content of selected elements in Boletus badius fruiting bodies growing in extremely polluted wastes. Mleczek M; Siwulski M; Mikołajczak P; Gąsecka M; Sobieralski K; Szymańczyk M; Goliński P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(7):767-75. PubMed ID: 25901855 [TBL] [Abstract][Full Text] [Related]
9. Concentration of selected trace elements in Xerocomus badius mushroom bodies - a health risk for humans? Mleczek M; Siwulski M; Kaczmarek Z; Rissmann I; Sobieralski K; Goliński P Acta Sci Pol Technol Aliment; 2013; 12(3):331-43. PubMed ID: 24584962 [TBL] [Abstract][Full Text] [Related]
10. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Campos JA; Tejera NA; Sánchez CJ Biometals; 2009 Oct; 22(5):835-41. PubMed ID: 19333556 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Kokkoris V; Massas I; Polemis E; Koutrotsios G; Zervakis GI Sci Total Environ; 2019 Oct; 685():280-296. PubMed ID: 31176215 [TBL] [Abstract][Full Text] [Related]
12. Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia). Stefanović V; Trifković J; Mutić J; Tešić Ž Environ Sci Pollut Res Int; 2016 Jul; 23(13):13178-90. PubMed ID: 27023804 [TBL] [Abstract][Full Text] [Related]
13. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Busuioc G; Elekes CC; Stihi C; Iordache S; Ciulei SC Environ Sci Pollut Res Int; 2011 Jul; 18(6):890-6. PubMed ID: 21274641 [TBL] [Abstract][Full Text] [Related]
14. Levels of eight trace elements in edible mushrooms from a rural area. Svoboda L; Chrastný V Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jan; 25(1):51-8. PubMed ID: 17852381 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal content of potato chips and biscuits from Nagpur City, India. Gopalani M; Shahare M; Ramteke DS; Wate SR Bull Environ Contam Toxicol; 2007 Oct; 79(4):384-7. PubMed ID: 17713713 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. Wang X; Liu H; Zhang J; Li T; Wang Y J Environ Sci Health B; 2017 Mar; 52(3):178-183. PubMed ID: 28121276 [TBL] [Abstract][Full Text] [Related]
17. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland. Proskura N; Podlasińska J; Skopicz-Radkiewicz L Chemosphere; 2017 Feb; 168():106-111. PubMed ID: 27776228 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Kumar Sharma R; Agrawal M; Marshall F Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660 [TBL] [Abstract][Full Text] [Related]
19. Mineral element levels in wild edible mushrooms from Yunnan, China. Liu H; Zhang J; Li T; Shi Y; Wang Y Biol Trace Elem Res; 2012 Jun; 147(1-3):341-5. PubMed ID: 22234825 [TBL] [Abstract][Full Text] [Related]
20. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Liu B; Huang Q; Cai H; Guo X; Wang T; Gui M Food Chem; 2015 Dec; 188():294-300. PubMed ID: 26041195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]