These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 20405156)
1. Dense packing in the monodisperse hard-sphere system: a numerical study. Xu WS; Sun ZY; An LJ Eur Phys J E Soft Matter; 2010 Apr; 31(4):377-82. PubMed ID: 20405156 [TBL] [Abstract][Full Text] [Related]
2. Random-close packing limits for monodisperse and polydisperse hard spheres. Baranau V; Tallarek U Soft Matter; 2014 Jun; 10(21):3826-41. PubMed ID: 24723008 [TBL] [Abstract][Full Text] [Related]
3. Local crystalline order features in disordered packings of monodisperse spheres. Jiang SQ; Li MZ J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33770772 [TBL] [Abstract][Full Text] [Related]
4. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. Atkinson S; Stillinger FH; Torquato S Phys Rev E; 2016 Sep; 94(3-1):032902. PubMed ID: 27739707 [TBL] [Abstract][Full Text] [Related]
5. Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming. Torquato S; Jiao Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061302. PubMed ID: 21230667 [TBL] [Abstract][Full Text] [Related]
6. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. Hopkins AB; Stillinger FH; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022205. PubMed ID: 24032826 [TBL] [Abstract][Full Text] [Related]
7. Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings. Atkinson S; Stillinger FH; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062208. PubMed ID: 24483437 [TBL] [Abstract][Full Text] [Related]
8. On the jamming phase diagram for frictionless hard-sphere packings. Baranau V; Tallarek U Soft Matter; 2014 Oct; 10(39):7838-48. PubMed ID: 25155116 [TBL] [Abstract][Full Text] [Related]
9. Structural properties of dense hard sphere packings. Klumov BA; Jin Y; Makse HA J Phys Chem B; 2014 Sep; 118(36):10761-6. PubMed ID: 25098389 [TBL] [Abstract][Full Text] [Related]
10. Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Atkinson S; Stillinger FH; Torquato S Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18436-41. PubMed ID: 25512529 [TBL] [Abstract][Full Text] [Related]
11. Polytetrahedral nature of the dense disordered packings of hard spheres. Anikeenko AV; Medvedev NN Phys Rev Lett; 2007 Jun; 98(23):235504. PubMed ID: 17677918 [TBL] [Abstract][Full Text] [Related]
12. Pushing the glass transition towards random close packing using self-propelled hard spheres. Ni R; Cohen Stuart MA; Dijkstra M Nat Commun; 2013; 4():2704. PubMed ID: 24162309 [TBL] [Abstract][Full Text] [Related]
13. The ideal glass transition of hard spheres. Parisi G; Zamponi F J Chem Phys; 2005 Oct; 123(14):144501. PubMed ID: 16238401 [TBL] [Abstract][Full Text] [Related]
14. Densest local sphere-packing diversity. II. Application to three dimensions. Hopkins AB; Stillinger FH; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011304. PubMed ID: 21405690 [TBL] [Abstract][Full Text] [Related]
15. Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings. Khirevich S; Höltzel A; Daneyko A; Seidel-Morgenstern A; Tallarek U J Chromatogr A; 2011 Sep; 1218(37):6489-97. PubMed ID: 21831382 [TBL] [Abstract][Full Text] [Related]
16. Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. Zhang G; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053312. PubMed ID: 24329384 [TBL] [Abstract][Full Text] [Related]
18. Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings. Hanifpour M; Francois N; Robins V; Kingston A; Allaei SM; Saadatfar M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062202. PubMed ID: 26172700 [TBL] [Abstract][Full Text] [Related]
19. Packing fraction of trimodal spheres with small size ratio: an analytical expression. Brouwers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032204. PubMed ID: 24125258 [TBL] [Abstract][Full Text] [Related]
20. Cavity approach to sphere packing in Hamming space. Ramezanpour A; Zecchina R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021106. PubMed ID: 22463152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]